Mister Exam

Other calculators

Derivative of (2sinx+3cosx)*x^2

Function f() - derivative -N order at the point
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
                       2
(2*sin(x) + 3*cos(x))*x 
$$x^{2} \left(2 \sin{\left(x \right)} + 3 \cos{\left(x \right)}\right)$$
(2*sin(x) + 3*cos(x))*x^2
Detail solution
  1. Apply the product rule:

    ; to find :

    1. Differentiate term by term:

      1. The derivative of a constant times a function is the constant times the derivative of the function.

        1. The derivative of sine is cosine:

        So, the result is:

      2. The derivative of a constant times a function is the constant times the derivative of the function.

        1. The derivative of cosine is negative sine:

        So, the result is:

      The result is:

    ; to find :

    1. Apply the power rule: goes to

    The result is:

  2. Now simplify:


The answer is:

The graph
The first derivative [src]
 2                                                   
x *(-3*sin(x) + 2*cos(x)) + 2*x*(2*sin(x) + 3*cos(x))
$$x^{2} \left(- 3 \sin{\left(x \right)} + 2 \cos{\left(x \right)}\right) + 2 x \left(2 \sin{\left(x \right)} + 3 \cos{\left(x \right)}\right)$$
The second derivative [src]
                       2                                                   
4*sin(x) + 6*cos(x) - x *(2*sin(x) + 3*cos(x)) - 4*x*(-2*cos(x) + 3*sin(x))
$$- x^{2} \left(2 \sin{\left(x \right)} + 3 \cos{\left(x \right)}\right) - 4 x \left(3 \sin{\left(x \right)} - 2 \cos{\left(x \right)}\right) + 4 \sin{\left(x \right)} + 6 \cos{\left(x \right)}$$
The third derivative [src]
                          2                                                   
-18*sin(x) + 12*cos(x) + x *(-2*cos(x) + 3*sin(x)) - 6*x*(2*sin(x) + 3*cos(x))
$$x^{2} \left(3 \sin{\left(x \right)} - 2 \cos{\left(x \right)}\right) - 6 x \left(2 \sin{\left(x \right)} + 3 \cos{\left(x \right)}\right) - 18 \sin{\left(x \right)} + 12 \cos{\left(x \right)}$$