Mister Exam

Other calculators

Derivative of (2sinx+3cosx)*x^2

Function f() - derivative -N order at the point
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
                       2
(2*sin(x) + 3*cos(x))*x 
x2(2sin(x)+3cos(x))x^{2} \left(2 \sin{\left(x \right)} + 3 \cos{\left(x \right)}\right)
(2*sin(x) + 3*cos(x))*x^2
Detail solution
  1. Apply the product rule:

    ddxf(x)g(x)=f(x)ddxg(x)+g(x)ddxf(x)\frac{d}{d x} f{\left(x \right)} g{\left(x \right)} = f{\left(x \right)} \frac{d}{d x} g{\left(x \right)} + g{\left(x \right)} \frac{d}{d x} f{\left(x \right)}

    f(x)=2sin(x)+3cos(x)f{\left(x \right)} = 2 \sin{\left(x \right)} + 3 \cos{\left(x \right)}; to find ddxf(x)\frac{d}{d x} f{\left(x \right)}:

    1. Differentiate 2sin(x)+3cos(x)2 \sin{\left(x \right)} + 3 \cos{\left(x \right)} term by term:

      1. The derivative of a constant times a function is the constant times the derivative of the function.

        1. The derivative of sine is cosine:

          ddxsin(x)=cos(x)\frac{d}{d x} \sin{\left(x \right)} = \cos{\left(x \right)}

        So, the result is: 2cos(x)2 \cos{\left(x \right)}

      2. The derivative of a constant times a function is the constant times the derivative of the function.

        1. The derivative of cosine is negative sine:

          ddxcos(x)=sin(x)\frac{d}{d x} \cos{\left(x \right)} = - \sin{\left(x \right)}

        So, the result is: 3sin(x)- 3 \sin{\left(x \right)}

      The result is: 3sin(x)+2cos(x)- 3 \sin{\left(x \right)} + 2 \cos{\left(x \right)}

    g(x)=x2g{\left(x \right)} = x^{2}; to find ddxg(x)\frac{d}{d x} g{\left(x \right)}:

    1. Apply the power rule: x2x^{2} goes to 2x2 x

    The result is: x2(3sin(x)+2cos(x))+2x(2sin(x)+3cos(x))x^{2} \left(- 3 \sin{\left(x \right)} + 2 \cos{\left(x \right)}\right) + 2 x \left(2 \sin{\left(x \right)} + 3 \cos{\left(x \right)}\right)

  2. Now simplify:

    x(x(3sin(x)+2cos(x))+4sin(x)+6cos(x))x \left(x \left(- 3 \sin{\left(x \right)} + 2 \cos{\left(x \right)}\right) + 4 \sin{\left(x \right)} + 6 \cos{\left(x \right)}\right)


The answer is:

x(x(3sin(x)+2cos(x))+4sin(x)+6cos(x))x \left(x \left(- 3 \sin{\left(x \right)} + 2 \cos{\left(x \right)}\right) + 4 \sin{\left(x \right)} + 6 \cos{\left(x \right)}\right)

The graph
02468-8-6-4-2-1010-500500
The first derivative [src]
 2                                                   
x *(-3*sin(x) + 2*cos(x)) + 2*x*(2*sin(x) + 3*cos(x))
x2(3sin(x)+2cos(x))+2x(2sin(x)+3cos(x))x^{2} \left(- 3 \sin{\left(x \right)} + 2 \cos{\left(x \right)}\right) + 2 x \left(2 \sin{\left(x \right)} + 3 \cos{\left(x \right)}\right)
The second derivative [src]
                       2                                                   
4*sin(x) + 6*cos(x) - x *(2*sin(x) + 3*cos(x)) - 4*x*(-2*cos(x) + 3*sin(x))
x2(2sin(x)+3cos(x))4x(3sin(x)2cos(x))+4sin(x)+6cos(x)- x^{2} \left(2 \sin{\left(x \right)} + 3 \cos{\left(x \right)}\right) - 4 x \left(3 \sin{\left(x \right)} - 2 \cos{\left(x \right)}\right) + 4 \sin{\left(x \right)} + 6 \cos{\left(x \right)}
The third derivative [src]
                          2                                                   
-18*sin(x) + 12*cos(x) + x *(-2*cos(x) + 3*sin(x)) - 6*x*(2*sin(x) + 3*cos(x))
x2(3sin(x)2cos(x))6x(2sin(x)+3cos(x))18sin(x)+12cos(x)x^{2} \left(3 \sin{\left(x \right)} - 2 \cos{\left(x \right)}\right) - 6 x \left(2 \sin{\left(x \right)} + 3 \cos{\left(x \right)}\right) - 18 \sin{\left(x \right)} + 12 \cos{\left(x \right)}