Mister Exam

Other calculators

Derivative of (2+3x)(x-1)^(1/2)

Function f() - derivative -N order at the point
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
            _______
(2 + 3*x)*\/ x - 1 
x1(3x+2)\sqrt{x - 1} \left(3 x + 2\right)
(2 + 3*x)*sqrt(x - 1)
Detail solution
  1. Apply the product rule:

    ddxf(x)g(x)=f(x)ddxg(x)+g(x)ddxf(x)\frac{d}{d x} f{\left(x \right)} g{\left(x \right)} = f{\left(x \right)} \frac{d}{d x} g{\left(x \right)} + g{\left(x \right)} \frac{d}{d x} f{\left(x \right)}

    f(x)=3x+2f{\left(x \right)} = 3 x + 2; to find ddxf(x)\frac{d}{d x} f{\left(x \right)}:

    1. Differentiate 3x+23 x + 2 term by term:

      1. The derivative of the constant 22 is zero.

      2. The derivative of a constant times a function is the constant times the derivative of the function.

        1. Apply the power rule: xx goes to 11

        So, the result is: 33

      The result is: 33

    g(x)=x1g{\left(x \right)} = \sqrt{x - 1}; to find ddxg(x)\frac{d}{d x} g{\left(x \right)}:

    1. Let u=x1u = x - 1.

    2. Apply the power rule: u\sqrt{u} goes to 12u\frac{1}{2 \sqrt{u}}

    3. Then, apply the chain rule. Multiply by ddx(x1)\frac{d}{d x} \left(x - 1\right):

      1. Differentiate x1x - 1 term by term:

        1. Apply the power rule: xx goes to 11

        2. The derivative of the constant 1-1 is zero.

        The result is: 11

      The result of the chain rule is:

      12x1\frac{1}{2 \sqrt{x - 1}}

    The result is: 3x1+3x+22x13 \sqrt{x - 1} + \frac{3 x + 2}{2 \sqrt{x - 1}}

  2. Now simplify:

    9x42x1\frac{9 x - 4}{2 \sqrt{x - 1}}


The answer is:

9x42x1\frac{9 x - 4}{2 \sqrt{x - 1}}

The graph
02468-8-6-4-2-10100100
The first derivative [src]
    _______     2 + 3*x  
3*\/ x - 1  + -----------
                  _______
              2*\/ x - 1 
3x1+3x+22x13 \sqrt{x - 1} + \frac{3 x + 2}{2 \sqrt{x - 1}}
The second derivative [src]
     2 + 3*x  
3 - ----------
    4*(-1 + x)
--------------
    ________  
  \/ -1 + x   
33x+24(x1)x1\frac{3 - \frac{3 x + 2}{4 \left(x - 1\right)}}{\sqrt{x - 1}}
The third derivative [src]
  /     2 + 3*x\
3*|-6 + -------|
  \      -1 + x/
----------------
           3/2  
 8*(-1 + x)     
3(6+3x+2x1)8(x1)32\frac{3 \left(-6 + \frac{3 x + 2}{x - 1}\right)}{8 \left(x - 1\right)^{\frac{3}{2}}}