3 (3*x + 2)*log (x)
d / 3 \ --\(3*x + 2)*log (x)/ dx
Apply the product rule:
; to find :
Differentiate term by term:
The derivative of a constant times a function is the constant times the derivative of the function.
Apply the power rule: goes to
So, the result is:
The derivative of the constant is zero.
The result is:
; to find :
Let .
Apply the power rule: goes to
Then, apply the chain rule. Multiply by :
The derivative of is .
The result of the chain rule is:
The result is:
Now simplify:
The answer is:
2 3 3*log (x)*(3*x + 2) 3*log (x) + ------------------- x
/ (-2 + log(x))*(2 + 3*x)\ 3*|6*log(x) - -----------------------|*log(x) \ x / --------------------------------------------- x
/ / 2 \\ | 2*(2 + 3*x)*\1 + log (x) - 3*log(x)/| 3*|-9*(-2 + log(x))*log(x) + ------------------------------------| \ x / ------------------------------------------------------------------ 2 x