Mister Exam

Other calculators


(3x+2)*ln^3(x)

Derivative of (3x+2)*ln^3(x)

Function f() - derivative -N order at the point
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
             3   
(3*x + 2)*log (x)
$$\left(3 x + 2\right) \log{\left(x \right)}^{3}$$
d /             3   \
--\(3*x + 2)*log (x)/
dx                   
$$\frac{d}{d x} \left(3 x + 2\right) \log{\left(x \right)}^{3}$$
Detail solution
  1. Apply the product rule:

    ; to find :

    1. Differentiate term by term:

      1. The derivative of a constant times a function is the constant times the derivative of the function.

        1. Apply the power rule: goes to

        So, the result is:

      2. The derivative of the constant is zero.

      The result is:

    ; to find :

    1. Let .

    2. Apply the power rule: goes to

    3. Then, apply the chain rule. Multiply by :

      1. The derivative of is .

      The result of the chain rule is:

    The result is:

  2. Now simplify:


The answer is:

The graph
The first derivative [src]
                 2             
     3      3*log (x)*(3*x + 2)
3*log (x) + -------------------
                     x         
$$3 \log{\left(x \right)}^{3} + \frac{3 \cdot \left(3 x + 2\right) \log{\left(x \right)}^{2}}{x}$$
The second derivative [src]
  /           (-2 + log(x))*(2 + 3*x)\       
3*|6*log(x) - -----------------------|*log(x)
  \                      x           /       
---------------------------------------------
                      x                      
$$\frac{3 \cdot \left(6 \log{\left(x \right)} - \frac{\left(3 x + 2\right) \left(\log{\left(x \right)} - 2\right)}{x}\right) \log{\left(x \right)}}{x}$$
The third derivative [src]
  /                                      /       2              \\
  |                          2*(2 + 3*x)*\1 + log (x) - 3*log(x)/|
3*|-9*(-2 + log(x))*log(x) + ------------------------------------|
  \                                           x                  /
------------------------------------------------------------------
                                 2                                
                                x                                 
$$\frac{3 \left(- 9 \left(\log{\left(x \right)} - 2\right) \log{\left(x \right)} + \frac{2 \cdot \left(3 x + 2\right) \left(\log{\left(x \right)}^{2} - 3 \log{\left(x \right)} + 1\right)}{x}\right)}{x^{2}}$$
The graph
Derivative of (3x+2)*ln^3(x)