Mister Exam

Other calculators


2^(3*x)/3^(2*x)

You entered:

2^(3*x)/3^(2*x)

What you mean?

Derivative of 2^(3*x)/3^(2*x)

Function f() - derivative -N order at the point
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
 3*x
2   
----
 2*x
3   
$$\frac{2^{3 x}}{3^{2 x}}$$
  / 3*x\
d |2   |
--|----|
dx| 2*x|
  \3   /
$$\frac{d}{d x} \frac{2^{3 x}}{3^{2 x}}$$
Detail solution
  1. Apply the quotient rule, which is:

    and .

    To find :

    1. Let .

    2. Then, apply the chain rule. Multiply by :

      1. The derivative of a constant times a function is the constant times the derivative of the function.

        1. Apply the power rule: goes to

        So, the result is:

      The result of the chain rule is:

    To find :

    1. Let .

    2. Then, apply the chain rule. Multiply by :

      1. The derivative of a constant times a function is the constant times the derivative of the function.

        1. Apply the power rule: goes to

        So, the result is:

      The result of the chain rule is:

    Now plug in to the quotient rule:

  2. Now simplify:


The answer is:

The graph
The first derivative [src]
     3*x  -2*x             3*x  -2*x       
- 2*2   *3    *log(3) + 3*2   *3    *log(2)
$$- 2 \cdot 2^{3 x} 3^{- 2 x} \log{\left(3 \right)} + 3 \cdot 2^{3 x} 3^{- 2 x} \log{\left(2 \right)}$$
The second derivative [src]
 3*x  -2*x /     2           2                      \
2   *3    *\4*log (3) + 9*log (2) - 12*log(2)*log(3)/
$$2^{3 x} 3^{- 2 x} \left(- 12 \log{\left(2 \right)} \log{\left(3 \right)} + 9 \log{\left(2 \right)}^{2} + 4 \log{\left(3 \right)}^{2}\right)$$
The third derivative [src]
 3*x  -2*x /       3            3            2                   2          \
2   *3    *\- 8*log (3) + 27*log (2) - 54*log (2)*log(3) + 36*log (3)*log(2)/
$$2^{3 x} 3^{- 2 x} \left(- 54 \log{\left(2 \right)}^{2} \log{\left(3 \right)} - 8 \log{\left(3 \right)}^{3} + 27 \log{\left(2 \right)}^{3} + 36 \log{\left(2 \right)} \log{\left(3 \right)}^{2}\right)$$
The graph
Derivative of 2^(3*x)/3^(2*x)