Mister Exam

Other calculators


3^x*sin(x)

Derivative of 3^x*sin(x)

Function f() - derivative -N order at the point
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
 x       
3 *sin(x)
$$3^{x} \sin{\left(x \right)}$$
3^x*sin(x)
Detail solution
  1. Apply the product rule:

    ; to find :

    ; to find :

    1. The derivative of sine is cosine:

    The result is:

  2. Now simplify:


The answer is:

The graph
The first derivative [src]
 x           x              
3 *cos(x) + 3 *log(3)*sin(x)
$$3^{x} \log{\left(3 \right)} \sin{\left(x \right)} + 3^{x} \cos{\left(x \right)}$$
The second derivative [src]
 x /             2                            \
3 *\-sin(x) + log (3)*sin(x) + 2*cos(x)*log(3)/
$$3^{x} \left(- \sin{\left(x \right)} + \log{\left(3 \right)}^{2} \sin{\left(x \right)} + 2 \log{\left(3 \right)} \cos{\left(x \right)}\right)$$
The third derivative [src]
 x /             3                                    2          \
3 *\-cos(x) + log (3)*sin(x) - 3*log(3)*sin(x) + 3*log (3)*cos(x)/
$$3^{x} \left(- 3 \log{\left(3 \right)} \sin{\left(x \right)} + \log{\left(3 \right)}^{3} \sin{\left(x \right)} - \cos{\left(x \right)} + 3 \log{\left(3 \right)}^{2} \cos{\left(x \right)}\right)$$
The graph
Derivative of 3^x*sin(x)