Detail solution
-
Apply the product rule:
; to find :
-
; to find :
-
The derivative of sine is cosine:
The result is:
-
Now simplify:
The answer is:
The first derivative
[src]
x x
3 *cos(x) + 3 *log(3)*sin(x)
$$3^{x} \log{\left(3 \right)} \sin{\left(x \right)} + 3^{x} \cos{\left(x \right)}$$
The second derivative
[src]
x / 2 \
3 *\-sin(x) + log (3)*sin(x) + 2*cos(x)*log(3)/
$$3^{x} \left(- \sin{\left(x \right)} + \log{\left(3 \right)}^{2} \sin{\left(x \right)} + 2 \log{\left(3 \right)} \cos{\left(x \right)}\right)$$
The third derivative
[src]
x / 3 2 \
3 *\-cos(x) + log (3)*sin(x) - 3*log(3)*sin(x) + 3*log (3)*cos(x)/
$$3^{x} \left(- 3 \log{\left(3 \right)} \sin{\left(x \right)} + \log{\left(3 \right)}^{3} \sin{\left(x \right)} - \cos{\left(x \right)} + 3 \log{\left(3 \right)}^{2} \cos{\left(x \right)}\right)$$