Mister Exam

Other calculators


(3t^3-4t+6)^3

Derivative of (3t^3-4t+6)^3

Function f() - derivative -N order at the point
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
                3
/   3          \ 
\3*t  - 4*t + 6/ 
$$\left(3 t^{3} - 4 t + 6\right)^{3}$$
  /                3\
d |/   3          \ |
--\\3*t  - 4*t + 6/ /
dt                   
$$\frac{d}{d t} \left(3 t^{3} - 4 t + 6\right)^{3}$$
Detail solution
  1. Let .

  2. Apply the power rule: goes to

  3. Then, apply the chain rule. Multiply by :

    1. Differentiate term by term:

      1. The derivative of a constant times a function is the constant times the derivative of the function.

        1. Apply the power rule: goes to

        So, the result is:

      2. The derivative of a constant times a function is the constant times the derivative of the function.

        1. The derivative of a constant times a function is the constant times the derivative of the function.

          1. Apply the power rule: goes to

          So, the result is:

        So, the result is:

      3. The derivative of the constant is zero.

      The result is:

    The result of the chain rule is:

  4. Now simplify:


The answer is:

The graph
The first derivative [src]
                2              
/   3          \  /          2\
\3*t  - 4*t + 6/ *\-12 + 27*t /
$$\left(27 t^{2} - 12\right) \left(3 t^{3} - 4 t + 6\right)^{2}$$
The second derivative [src]
  /           2                       \                 
  |/        2\        /             3\| /             3\
6*\\-4 + 9*t /  + 9*t*\6 - 4*t + 3*t //*\6 - 4*t + 3*t /
$$6 \cdot \left(9 t \left(3 t^{3} - 4 t + 6\right) + \left(9 t^{2} - 4\right)^{2}\right) \left(3 t^{3} - 4 t + 6\right)$$
The third derivative [src]
  /           3                     2                                    \
  |/        2\      /             3\         /        2\ /             3\|
6*\\-4 + 9*t /  + 9*\6 - 4*t + 3*t /  + 54*t*\-4 + 9*t /*\6 - 4*t + 3*t //
$$6 \cdot \left(54 t \left(9 t^{2} - 4\right) \left(3 t^{3} - 4 t + 6\right) + \left(9 t^{2} - 4\right)^{3} + 9 \left(3 t^{3} - 4 t + 6\right)^{2}\right)$$
The graph
Derivative of (3t^3-4t+6)^3