Mister Exam

Other calculators


sqrt(x^2-6x+13)

Derivative of sqrt(x^2-6x+13)

Function f() - derivative -N order at the point
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
   _______________
  /  2            
\/  x  - 6*x + 13 
$$\sqrt{\left(x^{2} - 6 x\right) + 13}$$
Detail solution
  1. Let .

  2. Apply the power rule: goes to

  3. Then, apply the chain rule. Multiply by :

    1. Differentiate term by term:

      1. Differentiate term by term:

        1. Apply the power rule: goes to

        2. The derivative of a constant times a function is the constant times the derivative of the function.

          1. Apply the power rule: goes to

          So, the result is:

        The result is:

      2. The derivative of the constant is zero.

      The result is:

    The result of the chain rule is:

  4. Now simplify:


The answer is:

The graph
The first derivative [src]
      -3 + x      
------------------
   _______________
  /  2            
\/  x  - 6*x + 13 
$$\frac{x - 3}{\sqrt{\left(x^{2} - 6 x\right) + 13}}$$
The second derivative [src]
              2   
      (-3 + x)    
1 - ------------- 
          2       
    13 + x  - 6*x 
------------------
   _______________
  /       2       
\/  13 + x  - 6*x 
$$\frac{- \frac{\left(x - 3\right)^{2}}{x^{2} - 6 x + 13} + 1}{\sqrt{x^{2} - 6 x + 13}}$$
The third derivative [src]
  /               2  \         
  |       (-3 + x)   |         
3*|-1 + -------------|*(-3 + x)
  |           2      |         
  \     13 + x  - 6*x/         
-------------------------------
                      3/2      
       /      2      \         
       \13 + x  - 6*x/         
$$\frac{3 \left(x - 3\right) \left(\frac{\left(x - 3\right)^{2}}{x^{2} - 6 x + 13} - 1\right)}{\left(x^{2} - 6 x + 13\right)^{\frac{3}{2}}}$$
The graph
Derivative of sqrt(x^2-6x+13)