Mister Exam

Other calculators


sin(4x^2)

Derivative of sin(4x^2)

Function f() - derivative -N order at the point
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
   /   2\
sin\4*x /
sin(4x2)\sin{\left(4 x^{2} \right)}
sin(4*x^2)
Detail solution
  1. Let u=4x2u = 4 x^{2}.

  2. The derivative of sine is cosine:

    ddusin(u)=cos(u)\frac{d}{d u} \sin{\left(u \right)} = \cos{\left(u \right)}

  3. Then, apply the chain rule. Multiply by ddx4x2\frac{d}{d x} 4 x^{2}:

    1. The derivative of a constant times a function is the constant times the derivative of the function.

      1. Apply the power rule: x2x^{2} goes to 2x2 x

      So, the result is: 8x8 x

    The result of the chain rule is:

    8xcos(4x2)8 x \cos{\left(4 x^{2} \right)}


The answer is:

8xcos(4x2)8 x \cos{\left(4 x^{2} \right)}

The graph
02468-8-6-4-2-1010-200200
The first derivative [src]
       /   2\
8*x*cos\4*x /
8xcos(4x2)8 x \cos{\left(4 x^{2} \right)}
The second derivative [src]
  /     2    /   2\      /   2\\
8*\- 8*x *sin\4*x / + cos\4*x //
8(8x2sin(4x2)+cos(4x2))8 \left(- 8 x^{2} \sin{\left(4 x^{2} \right)} + \cos{\left(4 x^{2} \right)}\right)
The third derivative [src]
      /     /   2\      2    /   2\\
-64*x*\3*sin\4*x / + 8*x *cos\4*x //
64x(8x2cos(4x2)+3sin(4x2))- 64 x \left(8 x^{2} \cos{\left(4 x^{2} \right)} + 3 \sin{\left(4 x^{2} \right)}\right)
The graph
Derivative of sin(4x^2)