x*x
Apply the product rule:
f(x)=xf{\left(x \right)} = xf(x)=x; to find ddxf(x)\frac{d}{d x} f{\left(x \right)}dxdf(x):
Apply the power rule: xxx goes to 111
g(x)=xg{\left(x \right)} = xg(x)=x; to find ddxg(x)\frac{d}{d x} g{\left(x \right)}dxdg(x):
The result is: 2x2 x2x
The answer is:
2*x
2
0