Apply the quotient rule, which is:
dxdg(x)f(x)=g2(x)−f(x)dxdg(x)+g(x)dxdf(x)
f(x)=sin(7x) and g(x)=cos(7x).
To find dxdf(x):
-
Let u=7x.
-
The derivative of sine is cosine:
dudsin(u)=cos(u)
-
Then, apply the chain rule. Multiply by dxd7x:
-
The derivative of a constant times a function is the constant times the derivative of the function.
-
Apply the power rule: x goes to 1
So, the result is: 7
The result of the chain rule is:
7cos(7x)
To find dxdg(x):
-
Let u=7x.
-
The derivative of cosine is negative sine:
dudcos(u)=−sin(u)
-
Then, apply the chain rule. Multiply by dxd7x:
-
The derivative of a constant times a function is the constant times the derivative of the function.
-
Apply the power rule: x goes to 1
So, the result is: 7
The result of the chain rule is:
−7sin(7x)
Now plug in to the quotient rule:
cos2(7x)7sin2(7x)+7cos2(7x)