Mister Exam

Derivative of sin(6x)cos(5x)tg(7x)

Function f() - derivative -N order at the point
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
sin(6*x)*cos(5*x)*tan(7*x)
sin(6x)cos(5x)tan(7x)\sin{\left(6 x \right)} \cos{\left(5 x \right)} \tan{\left(7 x \right)}
(sin(6*x)*cos(5*x))*tan(7*x)
Detail solution
  1. Apply the product rule:

    ddxf(x)g(x)=f(x)ddxg(x)+g(x)ddxf(x)\frac{d}{d x} f{\left(x \right)} g{\left(x \right)} = f{\left(x \right)} \frac{d}{d x} g{\left(x \right)} + g{\left(x \right)} \frac{d}{d x} f{\left(x \right)}

    f(x)=sin(6x)cos(5x)f{\left(x \right)} = \sin{\left(6 x \right)} \cos{\left(5 x \right)}; to find ddxf(x)\frac{d}{d x} f{\left(x \right)}:

    1. Apply the product rule:

      ddxf(x)g(x)=f(x)ddxg(x)+g(x)ddxf(x)\frac{d}{d x} f{\left(x \right)} g{\left(x \right)} = f{\left(x \right)} \frac{d}{d x} g{\left(x \right)} + g{\left(x \right)} \frac{d}{d x} f{\left(x \right)}

      f(x)=sin(6x)f{\left(x \right)} = \sin{\left(6 x \right)}; to find ddxf(x)\frac{d}{d x} f{\left(x \right)}:

      1. Let u=6xu = 6 x.

      2. The derivative of sine is cosine:

        ddusin(u)=cos(u)\frac{d}{d u} \sin{\left(u \right)} = \cos{\left(u \right)}

      3. Then, apply the chain rule. Multiply by ddx6x\frac{d}{d x} 6 x:

        1. The derivative of a constant times a function is the constant times the derivative of the function.

          1. Apply the power rule: xx goes to 11

          So, the result is: 66

        The result of the chain rule is:

        6cos(6x)6 \cos{\left(6 x \right)}

      g(x)=cos(5x)g{\left(x \right)} = \cos{\left(5 x \right)}; to find ddxg(x)\frac{d}{d x} g{\left(x \right)}:

      1. Let u=5xu = 5 x.

      2. The derivative of cosine is negative sine:

        dducos(u)=sin(u)\frac{d}{d u} \cos{\left(u \right)} = - \sin{\left(u \right)}

      3. Then, apply the chain rule. Multiply by ddx5x\frac{d}{d x} 5 x:

        1. The derivative of a constant times a function is the constant times the derivative of the function.

          1. Apply the power rule: xx goes to 11

          So, the result is: 55

        The result of the chain rule is:

        5sin(5x)- 5 \sin{\left(5 x \right)}

      The result is: 5sin(5x)sin(6x)+6cos(5x)cos(6x)- 5 \sin{\left(5 x \right)} \sin{\left(6 x \right)} + 6 \cos{\left(5 x \right)} \cos{\left(6 x \right)}

    g(x)=tan(7x)g{\left(x \right)} = \tan{\left(7 x \right)}; to find ddxg(x)\frac{d}{d x} g{\left(x \right)}:

    1. Rewrite the function to be differentiated:

      tan(7x)=sin(7x)cos(7x)\tan{\left(7 x \right)} = \frac{\sin{\left(7 x \right)}}{\cos{\left(7 x \right)}}

    2. Apply the quotient rule, which is:

      ddxf(x)g(x)=f(x)ddxg(x)+g(x)ddxf(x)g2(x)\frac{d}{d x} \frac{f{\left(x \right)}}{g{\left(x \right)}} = \frac{- f{\left(x \right)} \frac{d}{d x} g{\left(x \right)} + g{\left(x \right)} \frac{d}{d x} f{\left(x \right)}}{g^{2}{\left(x \right)}}

      f(x)=sin(7x)f{\left(x \right)} = \sin{\left(7 x \right)} and g(x)=cos(7x)g{\left(x \right)} = \cos{\left(7 x \right)}.

      To find ddxf(x)\frac{d}{d x} f{\left(x \right)}:

      1. Let u=7xu = 7 x.

      2. The derivative of sine is cosine:

        ddusin(u)=cos(u)\frac{d}{d u} \sin{\left(u \right)} = \cos{\left(u \right)}

      3. Then, apply the chain rule. Multiply by ddx7x\frac{d}{d x} 7 x:

        1. The derivative of a constant times a function is the constant times the derivative of the function.

          1. Apply the power rule: xx goes to 11

          So, the result is: 77

        The result of the chain rule is:

        7cos(7x)7 \cos{\left(7 x \right)}

      To find ddxg(x)\frac{d}{d x} g{\left(x \right)}:

      1. Let u=7xu = 7 x.

      2. The derivative of cosine is negative sine:

        dducos(u)=sin(u)\frac{d}{d u} \cos{\left(u \right)} = - \sin{\left(u \right)}

      3. Then, apply the chain rule. Multiply by ddx7x\frac{d}{d x} 7 x:

        1. The derivative of a constant times a function is the constant times the derivative of the function.

          1. Apply the power rule: xx goes to 11

          So, the result is: 77

        The result of the chain rule is:

        7sin(7x)- 7 \sin{\left(7 x \right)}

      Now plug in to the quotient rule:

      7sin2(7x)+7cos2(7x)cos2(7x)\frac{7 \sin^{2}{\left(7 x \right)} + 7 \cos^{2}{\left(7 x \right)}}{\cos^{2}{\left(7 x \right)}}

    The result is: (5sin(5x)sin(6x)+6cos(5x)cos(6x))tan(7x)+(7sin2(7x)+7cos2(7x))sin(6x)cos(5x)cos2(7x)\left(- 5 \sin{\left(5 x \right)} \sin{\left(6 x \right)} + 6 \cos{\left(5 x \right)} \cos{\left(6 x \right)}\right) \tan{\left(7 x \right)} + \frac{\left(7 \sin^{2}{\left(7 x \right)} + 7 \cos^{2}{\left(7 x \right)}\right) \sin{\left(6 x \right)} \cos{\left(5 x \right)}}{\cos^{2}{\left(7 x \right)}}

  2. Now simplify:

    (cos(x)+11cos(11x))sin(7x)cos(7x)2+7sin(6x)cos(5x)cos2(7x)\frac{\frac{\left(\cos{\left(x \right)} + 11 \cos{\left(11 x \right)}\right) \sin{\left(7 x \right)} \cos{\left(7 x \right)}}{2} + 7 \sin{\left(6 x \right)} \cos{\left(5 x \right)}}{\cos^{2}{\left(7 x \right)}}


The answer is:

(cos(x)+11cos(11x))sin(7x)cos(7x)2+7sin(6x)cos(5x)cos2(7x)\frac{\frac{\left(\cos{\left(x \right)} + 11 \cos{\left(11 x \right)}\right) \sin{\left(7 x \right)} \cos{\left(7 x \right)}}{2} + 7 \sin{\left(6 x \right)} \cos{\left(5 x \right)}}{\cos^{2}{\left(7 x \right)}}

The graph
02468-8-6-4-2-1010-20002000
The first derivative [src]
                                                        /         2     \                  
(-5*sin(5*x)*sin(6*x) + 6*cos(5*x)*cos(6*x))*tan(7*x) + \7 + 7*tan (7*x)/*cos(5*x)*sin(6*x)
(5sin(5x)sin(6x)+6cos(5x)cos(6x))tan(7x)+(7tan2(7x)+7)sin(6x)cos(5x)\left(- 5 \sin{\left(5 x \right)} \sin{\left(6 x \right)} + 6 \cos{\left(5 x \right)} \cos{\left(6 x \right)}\right) \tan{\left(7 x \right)} + \left(7 \tan^{2}{\left(7 x \right)} + 7\right) \sin{\left(6 x \right)} \cos{\left(5 x \right)}
The second derivative [src]
                                                             /       2     \                                                   /       2     \                           
-(60*cos(6*x)*sin(5*x) + 61*cos(5*x)*sin(6*x))*tan(7*x) - 14*\1 + tan (7*x)/*(-6*cos(5*x)*cos(6*x) + 5*sin(5*x)*sin(6*x)) + 98*\1 + tan (7*x)/*cos(5*x)*sin(6*x)*tan(7*x)
14(5sin(5x)sin(6x)6cos(5x)cos(6x))(tan2(7x)+1)(60sin(5x)cos(6x)+61sin(6x)cos(5x))tan(7x)+98(tan2(7x)+1)sin(6x)cos(5x)tan(7x)- 14 \left(5 \sin{\left(5 x \right)} \sin{\left(6 x \right)} - 6 \cos{\left(5 x \right)} \cos{\left(6 x \right)}\right) \left(\tan^{2}{\left(7 x \right)} + 1\right) - \left(60 \sin{\left(5 x \right)} \cos{\left(6 x \right)} + 61 \sin{\left(6 x \right)} \cos{\left(5 x \right)}\right) \tan{\left(7 x \right)} + 98 \left(\tan^{2}{\left(7 x \right)} + 1\right) \sin{\left(6 x \right)} \cos{\left(5 x \right)} \tan{\left(7 x \right)}
The third derivative [src]
                                                               /       2     \                                                     /       2     \                                                             /       2     \ /         2     \                  
(-666*cos(5*x)*cos(6*x) + 665*sin(5*x)*sin(6*x))*tan(7*x) - 21*\1 + tan (7*x)/*(60*cos(6*x)*sin(5*x) + 61*cos(5*x)*sin(6*x)) - 294*\1 + tan (7*x)/*(-6*cos(5*x)*cos(6*x) + 5*sin(5*x)*sin(6*x))*tan(7*x) + 686*\1 + tan (7*x)/*\1 + 3*tan (7*x)/*cos(5*x)*sin(6*x)
294(5sin(5x)sin(6x)6cos(5x)cos(6x))(tan2(7x)+1)tan(7x)+(665sin(5x)sin(6x)666cos(5x)cos(6x))tan(7x)21(60sin(5x)cos(6x)+61sin(6x)cos(5x))(tan2(7x)+1)+686(tan2(7x)+1)(3tan2(7x)+1)sin(6x)cos(5x)- 294 \left(5 \sin{\left(5 x \right)} \sin{\left(6 x \right)} - 6 \cos{\left(5 x \right)} \cos{\left(6 x \right)}\right) \left(\tan^{2}{\left(7 x \right)} + 1\right) \tan{\left(7 x \right)} + \left(665 \sin{\left(5 x \right)} \sin{\left(6 x \right)} - 666 \cos{\left(5 x \right)} \cos{\left(6 x \right)}\right) \tan{\left(7 x \right)} - 21 \left(60 \sin{\left(5 x \right)} \cos{\left(6 x \right)} + 61 \sin{\left(6 x \right)} \cos{\left(5 x \right)}\right) \left(\tan^{2}{\left(7 x \right)} + 1\right) + 686 \left(\tan^{2}{\left(7 x \right)} + 1\right) \left(3 \tan^{2}{\left(7 x \right)} + 1\right) \sin{\left(6 x \right)} \cos{\left(5 x \right)}