Mister Exam

Derivative of tan(x)/x

Function f() - derivative -N order at the point
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
tan(x)
------
  x   
$$\frac{\tan{\left(x \right)}}{x}$$
d /tan(x)\
--|------|
dx\  x   /
$$\frac{d}{d x} \frac{\tan{\left(x \right)}}{x}$$
Detail solution
  1. Apply the quotient rule, which is:

    and .

    To find :

    1. Rewrite the function to be differentiated:

    2. Apply the quotient rule, which is:

      and .

      To find :

      1. The derivative of sine is cosine:

      To find :

      1. The derivative of cosine is negative sine:

      Now plug in to the quotient rule:

    To find :

    1. Apply the power rule: goes to

    Now plug in to the quotient rule:

  2. Now simplify:


The answer is:

The graph
The first derivative [src]
       2            
1 + tan (x)   tan(x)
----------- - ------
     x           2  
                x   
$$\frac{\tan^{2}{\left(x \right)} + 1}{x} - \frac{\tan{\left(x \right)}}{x^{2}}$$
The second derivative [src]
  /                                       2   \
  |tan(x)   /       2   \          1 + tan (x)|
2*|------ + \1 + tan (x)/*tan(x) - -----------|
  |   2                                 x     |
  \  x                                        /
-----------------------------------------------
                       x                       
$$\frac{2 \left(\left(\tan^{2}{\left(x \right)} + 1\right) \tan{\left(x \right)} - \frac{\tan^{2}{\left(x \right)} + 1}{x} + \frac{\tan{\left(x \right)}}{x^{2}}\right)}{x}$$
The third derivative [src]
  /                                             /       2   \     /       2   \       \
  |/       2   \ /         2   \   3*tan(x)   3*\1 + tan (x)/   3*\1 + tan (x)/*tan(x)|
2*|\1 + tan (x)/*\1 + 3*tan (x)/ - -------- + --------------- - ----------------------|
  |                                    3              2                   x           |
  \                                   x              x                                /
---------------------------------------------------------------------------------------
                                           x                                           
$$\frac{2 \left(\left(\tan^{2}{\left(x \right)} + 1\right) \left(3 \tan^{2}{\left(x \right)} + 1\right) - \frac{3 \left(\tan^{2}{\left(x \right)} + 1\right) \tan{\left(x \right)}}{x} + \frac{3 \left(\tan^{2}{\left(x \right)} + 1\right)}{x^{2}} - \frac{3 \tan{\left(x \right)}}{x^{3}}\right)}{x}$$
The graph
Derivative of tan(x)/x