Apply the quotient rule, which is:
and .
To find :
Rewrite the function to be differentiated:
Apply the quotient rule, which is:
and .
To find :
The derivative of sine is cosine:
To find :
The derivative of cosine is negative sine:
Now plug in to the quotient rule:
To find :
Differentiate term by term:
The derivative of the constant is zero.
Apply the power rule: goes to
The result is:
Now plug in to the quotient rule:
Now simplify:
The answer is:
2
1 + tan (x) tan(x)
----------- - --------
x + 2 2
(x + 2)
/ 2 \
| tan(x) / 2 \ 1 + tan (x)|
2*|-------- + \1 + tan (x)/*tan(x) - -----------|
| 2 2 + x |
\(2 + x) /
-------------------------------------------------
2 + x
/ / 2 \ / 2 \ \
|/ 2 \ / 2 \ 3*tan(x) 3*\1 + tan (x)/ 3*\1 + tan (x)/*tan(x)|
2*|\1 + tan (x)/*\1 + 3*tan (x)/ - -------- + --------------- - ----------------------|
| 3 2 2 + x |
\ (2 + x) (2 + x) /
---------------------------------------------------------------------------------------
2 + x