Mister Exam

Other calculators

Derivative of tanx/(x^2-4)

Function f() - derivative -N order at the point
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
tan(x)
------
 2    
x  - 4
$$\frac{\tan{\left(x \right)}}{x^{2} - 4}$$
tan(x)/(x^2 - 4)
Detail solution
  1. Apply the quotient rule, which is:

    and .

    To find :

    1. Rewrite the function to be differentiated:

    2. Apply the quotient rule, which is:

      and .

      To find :

      1. The derivative of sine is cosine:

      To find :

      1. The derivative of cosine is negative sine:

      Now plug in to the quotient rule:

    To find :

    1. Differentiate term by term:

      1. The derivative of the constant is zero.

      2. Apply the power rule: goes to

      The result is:

    Now plug in to the quotient rule:

  2. Now simplify:


The answer is:

The graph
The first derivative [src]
       2                
1 + tan (x)   2*x*tan(x)
----------- - ----------
    2                 2 
   x  - 4     / 2    \  
              \x  - 4/  
$$- \frac{2 x \tan{\left(x \right)}}{\left(x^{2} - 4\right)^{2}} + \frac{\tan^{2}{\left(x \right)} + 1}{x^{2} - 4}$$
The second derivative [src]
  /                       /          2 \                           \
  |                       |       4*x  |                           |
  |                       |-1 + -------|*tan(x)                    |
  |                       |           2|              /       2   \|
  |/       2   \          \     -4 + x /          2*x*\1 + tan (x)/|
2*|\1 + tan (x)/*tan(x) + --------------------- - -----------------|
  |                                    2                     2     |
  \                              -4 + x                -4 + x      /
--------------------------------------------------------------------
                                    2                               
                              -4 + x                                
$$\frac{2 \left(- \frac{2 x \left(\tan^{2}{\left(x \right)} + 1\right)}{x^{2} - 4} + \left(\tan^{2}{\left(x \right)} + 1\right) \tan{\left(x \right)} + \frac{\left(\frac{4 x^{2}}{x^{2} - 4} - 1\right) \tan{\left(x \right)}}{x^{2} - 4}\right)}{x^{2} - 4}$$
The third derivative [src]
  /                                                /          2 \        /          2 \                                  \
  |                                  /       2   \ |       4*x  |        |       2*x  |                                  |
  |                                3*\1 + tan (x)/*|-1 + -------|   12*x*|-1 + -------|*tan(x)                           |
  |                                                |           2|        |           2|              /       2   \       |
  |/       2   \ /         2   \                   \     -4 + x /        \     -4 + x /          6*x*\1 + tan (x)/*tan(x)|
2*|\1 + tan (x)/*\1 + 3*tan (x)/ + ------------------------------ - -------------------------- - ------------------------|
  |                                                 2                                2                         2         |
  |                                           -4 + x                        /      2\                    -4 + x          |
  \                                                                         \-4 + x /                                    /
--------------------------------------------------------------------------------------------------------------------------
                                                               2                                                          
                                                         -4 + x                                                           
$$\frac{2 \left(- \frac{6 x \left(\tan^{2}{\left(x \right)} + 1\right) \tan{\left(x \right)}}{x^{2} - 4} - \frac{12 x \left(\frac{2 x^{2}}{x^{2} - 4} - 1\right) \tan{\left(x \right)}}{\left(x^{2} - 4\right)^{2}} + \left(\tan^{2}{\left(x \right)} + 1\right) \left(3 \tan^{2}{\left(x \right)} + 1\right) + \frac{3 \left(\frac{4 x^{2}}{x^{2} - 4} - 1\right) \left(\tan^{2}{\left(x \right)} + 1\right)}{x^{2} - 4}\right)}{x^{2} - 4}$$