tan(x) ------ 2 x - 4
tan(x)/(x^2 - 4)
Apply the quotient rule, which is:
and .
To find :
Rewrite the function to be differentiated:
Apply the quotient rule, which is:
and .
To find :
The derivative of sine is cosine:
To find :
The derivative of cosine is negative sine:
Now plug in to the quotient rule:
To find :
Differentiate term by term:
The derivative of the constant is zero.
Apply the power rule: goes to
The result is:
Now plug in to the quotient rule:
Now simplify:
The answer is:
2 1 + tan (x) 2*x*tan(x) ----------- - ---------- 2 2 x - 4 / 2 \ \x - 4/
/ / 2 \ \ | | 4*x | | | |-1 + -------|*tan(x) | | | 2| / 2 \| |/ 2 \ \ -4 + x / 2*x*\1 + tan (x)/| 2*|\1 + tan (x)/*tan(x) + --------------------- - -----------------| | 2 2 | \ -4 + x -4 + x / -------------------------------------------------------------------- 2 -4 + x
/ / 2 \ / 2 \ \ | / 2 \ | 4*x | | 2*x | | | 3*\1 + tan (x)/*|-1 + -------| 12*x*|-1 + -------|*tan(x) | | | 2| | 2| / 2 \ | |/ 2 \ / 2 \ \ -4 + x / \ -4 + x / 6*x*\1 + tan (x)/*tan(x)| 2*|\1 + tan (x)/*\1 + 3*tan (x)/ + ------------------------------ - -------------------------- - ------------------------| | 2 2 2 | | -4 + x / 2\ -4 + x | \ \-4 + x / / -------------------------------------------------------------------------------------------------------------------------- 2 -4 + x