tan(x) ------ 2 x - 4
tan(x)/(x^2 - 4)
Apply the quotient rule, which is:
and .
To find :
Rewrite the function to be differentiated:
Apply the quotient rule, which is:
and .
To find :
The derivative of sine is cosine:
To find :
The derivative of cosine is negative sine:
Now plug in to the quotient rule:
To find :
Differentiate term by term:
The derivative of the constant is zero.
Apply the power rule: goes to
The result is:
Now plug in to the quotient rule:
Now simplify:
The answer is:
2
1 + tan (x) 2*x*tan(x)
----------- - ----------
2 2
x - 4 / 2 \
\x - 4/
/ / 2 \ \
| | 4*x | |
| |-1 + -------|*tan(x) |
| | 2| / 2 \|
|/ 2 \ \ -4 + x / 2*x*\1 + tan (x)/|
2*|\1 + tan (x)/*tan(x) + --------------------- - -----------------|
| 2 2 |
\ -4 + x -4 + x /
--------------------------------------------------------------------
2
-4 + x
/ / 2 \ / 2 \ \
| / 2 \ | 4*x | | 2*x | |
| 3*\1 + tan (x)/*|-1 + -------| 12*x*|-1 + -------|*tan(x) |
| | 2| | 2| / 2 \ |
|/ 2 \ / 2 \ \ -4 + x / \ -4 + x / 6*x*\1 + tan (x)/*tan(x)|
2*|\1 + tan (x)/*\1 + 3*tan (x)/ + ------------------------------ - -------------------------- - ------------------------|
| 2 2 2 |
| -4 + x / 2\ -4 + x |
\ \-4 + x / /
--------------------------------------------------------------------------------------------------------------------------
2
-4 + x