Mister Exam

Derivative of tan(1/x)

Function f() - derivative -N order at the point
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
   /  1\
tan|1*-|
   \  x/
$$\tan{\left(1 \cdot \frac{1}{x} \right)}$$
d /   /  1\\
--|tan|1*-||
dx\   \  x//
$$\frac{d}{d x} \tan{\left(1 \cdot \frac{1}{x} \right)}$$
Detail solution
  1. Rewrite the function to be differentiated:

  2. Apply the quotient rule, which is:

    and .

    To find :

    1. Let .

    2. The derivative of sine is cosine:

    3. Then, apply the chain rule. Multiply by :

      1. Apply the quotient rule, which is:

        and .

        To find :

        1. The derivative of the constant is zero.

        To find :

        1. Apply the power rule: goes to

        Now plug in to the quotient rule:

      The result of the chain rule is:

    To find :

    1. Let .

    2. The derivative of cosine is negative sine:

    3. Then, apply the chain rule. Multiply by :

      1. Apply the quotient rule, which is:

        and .

        To find :

        1. The derivative of the constant is zero.

        To find :

        1. Apply the power rule: goes to

        Now plug in to the quotient rule:

      The result of the chain rule is:

    Now plug in to the quotient rule:

  3. Now simplify:


The answer is:

The graph
The first derivative [src]
 /       2/  1\\ 
-|1 + tan |1*-|| 
 \        \  x// 
-----------------
         2       
        x        
$$- \frac{\tan^{2}{\left(1 \cdot \frac{1}{x} \right)} + 1}{x^{2}}$$
The second derivative [src]
                /       /1\\
                |    tan|-||
  /       2/1\\ |       \x/|
2*|1 + tan |-||*|1 + ------|
  \        \x// \      x   /
----------------------------
              3             
             x              
$$\frac{2 \cdot \left(1 + \frac{\tan{\left(\frac{1}{x} \right)}}{x}\right) \left(\tan^{2}{\left(\frac{1}{x} \right)} + 1\right)}{x^{3}}$$
The third derivative [src]
                 /           2/1\        2/1\        /1\\
                 |    1 + tan |-|   2*tan |-|   6*tan|-||
   /       2/1\\ |            \x/         \x/        \x/|
-2*|1 + tan |-||*|3 + ----------- + --------- + --------|
   \        \x// |          2            2         x    |
                 \         x            x               /
---------------------------------------------------------
                             4                           
                            x                            
$$- \frac{2 \left(\tan^{2}{\left(\frac{1}{x} \right)} + 1\right) \left(3 + \frac{6 \tan{\left(\frac{1}{x} \right)}}{x} + \frac{2 \tan^{2}{\left(\frac{1}{x} \right)}}{x^{2}} + \frac{\tan^{2}{\left(\frac{1}{x} \right)} + 1}{x^{2}}\right)}{x^{4}}$$
The graph
Derivative of tan(1/x)