2 x *log(x)
x^2*log(x)
Apply the product rule:
f(x)=x2f{\left(x \right)} = x^{2}f(x)=x2; to find ddxf(x)\frac{d}{d x} f{\left(x \right)}dxdf(x):
Apply the power rule: x2x^{2}x2 goes to 2x2 x2x
g(x)=log(x)g{\left(x \right)} = \log{\left(x \right)}g(x)=log(x); to find ddxg(x)\frac{d}{d x} g{\left(x \right)}dxdg(x):
The derivative of log(x)\log{\left(x \right)}log(x) is 1x\frac{1}{x}x1.
The result is: 2xlog(x)+x2 x \log{\left(x \right)} + x2xlog(x)+x
Now simplify:
The answer is:
x + 2*x*log(x)
3 + 2*log(x)
2 - x