Mister Exam

Other calculators


x^2*lnx

Derivative of x^2*lnx

Function f() - derivative -N order at the point
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
 2       
x *log(x)
x2log(x)x^{2} \log{\left(x \right)}
x^2*log(x)
Detail solution
  1. Apply the product rule:

    ddxf(x)g(x)=f(x)ddxg(x)+g(x)ddxf(x)\frac{d}{d x} f{\left(x \right)} g{\left(x \right)} = f{\left(x \right)} \frac{d}{d x} g{\left(x \right)} + g{\left(x \right)} \frac{d}{d x} f{\left(x \right)}

    f(x)=x2f{\left(x \right)} = x^{2}; to find ddxf(x)\frac{d}{d x} f{\left(x \right)}:

    1. Apply the power rule: x2x^{2} goes to 2x2 x

    g(x)=log(x)g{\left(x \right)} = \log{\left(x \right)}; to find ddxg(x)\frac{d}{d x} g{\left(x \right)}:

    1. The derivative of log(x)\log{\left(x \right)} is 1x\frac{1}{x}.

    The result is: 2xlog(x)+x2 x \log{\left(x \right)} + x

  2. Now simplify:

    x(2log(x)+1)x \left(2 \log{\left(x \right)} + 1\right)


The answer is:

x(2log(x)+1)x \left(2 \log{\left(x \right)} + 1\right)

The graph
02468-8-6-4-2-1010-250250
The first derivative [src]
x + 2*x*log(x)
2xlog(x)+x2 x \log{\left(x \right)} + x
The second derivative [src]
3 + 2*log(x)
2log(x)+32 \log{\left(x \right)} + 3
The third derivative [src]
2
-
x
2x\frac{2}{x}
The graph
Derivative of x^2*lnx