Mister Exam

Other calculators

Derivative of tan(1/((x+1)^(1/2)))

Function f() - derivative -N order at the point
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
   /    1    \
tan|---------|
   |  _______|
   \\/ x + 1 /
$$\tan{\left(\frac{1}{\sqrt{x + 1}} \right)}$$
tan(1/(sqrt(x + 1)))
Detail solution
  1. Rewrite the function to be differentiated:

  2. Apply the quotient rule, which is:

    and .

    To find :

    1. Let .

    2. The derivative of sine is cosine:

    3. Then, apply the chain rule. Multiply by :

      1. Let .

      2. Apply the power rule: goes to

      3. Then, apply the chain rule. Multiply by :

        1. Let .

        2. Apply the power rule: goes to

        3. Then, apply the chain rule. Multiply by :

          1. Differentiate term by term:

            1. Apply the power rule: goes to

            2. The derivative of the constant is zero.

            The result is:

          The result of the chain rule is:

        The result of the chain rule is:

      The result of the chain rule is:

    To find :

    1. Let .

    2. The derivative of cosine is negative sine:

    3. Then, apply the chain rule. Multiply by :

      1. Let .

      2. Apply the power rule: goes to

      3. Then, apply the chain rule. Multiply by :

        1. Let .

        2. Apply the power rule: goes to

        3. Then, apply the chain rule. Multiply by :

          1. Differentiate term by term:

            1. Apply the power rule: goes to

            2. The derivative of the constant is zero.

            The result is:

          The result of the chain rule is:

        The result of the chain rule is:

      The result of the chain rule is:

    Now plug in to the quotient rule:

  3. Now simplify:


The answer is:

The graph
The first derivative [src]
 /       2/    1    \\ 
-|1 + tan |---------|| 
 |        |  _______|| 
 \        \\/ x + 1 // 
-----------------------
               3/2     
      2*(x + 1)        
$$- \frac{\tan^{2}{\left(\frac{1}{\sqrt{x + 1}} \right)} + 1}{2 \left(x + 1\right)^{\frac{3}{2}}}$$
The second derivative [src]
                      /                  /    1    \\
                      |             2*tan|---------||
                      |                  |  _______||
/       2/    1    \\ |    3             \\/ 1 + x /|
|1 + tan |---------||*|---------- + ----------------|
|        |  _______|| |       5/2              3    |
\        \\/ 1 + x // \(1 + x)          (1 + x)     /
-----------------------------------------------------
                          4                          
$$\frac{\left(\frac{2 \tan{\left(\frac{1}{\sqrt{x + 1}} \right)}}{\left(x + 1\right)^{3}} + \frac{3}{\left(x + 1\right)^{\frac{5}{2}}}\right) \left(\tan^{2}{\left(\frac{1}{\sqrt{x + 1}} \right)} + 1\right)}{4}$$
The third derivative [src]
                       /               /       2/    1    \\        2/    1    \         /    1    \\ 
                       |             2*|1 + tan |---------||   4*tan |---------|   18*tan|---------|| 
                       |               |        |  _______||         |  _______|         |  _______|| 
 /       2/    1    \\ |    15         \        \\/ 1 + x //         \\/ 1 + x /         \\/ 1 + x /| 
-|1 + tan |---------||*|---------- + ----------------------- + ----------------- + -----------------| 
 |        |  _______|| |       7/2                 9/2                    9/2                  4    | 
 \        \\/ 1 + x // \(1 + x)             (1 + x)                (1 + x)              (1 + x)     / 
------------------------------------------------------------------------------------------------------
                                                  8                                                   
$$- \frac{\left(\tan^{2}{\left(\frac{1}{\sqrt{x + 1}} \right)} + 1\right) \left(\frac{18 \tan{\left(\frac{1}{\sqrt{x + 1}} \right)}}{\left(x + 1\right)^{4}} + \frac{15}{\left(x + 1\right)^{\frac{7}{2}}} + \frac{2 \left(\tan^{2}{\left(\frac{1}{\sqrt{x + 1}} \right)} + 1\right)}{\left(x + 1\right)^{\frac{9}{2}}} + \frac{4 \tan^{2}{\left(\frac{1}{\sqrt{x + 1}} \right)}}{\left(x + 1\right)^{\frac{9}{2}}}\right)}{8}$$