Mister Exam

Other calculators


sqrt(x^2-1)/x

Derivative of sqrt(x^2-1)/x

Function f() - derivative -N order at the point
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
   ________
  /  2     
\/  x  - 1 
-----------
     x     
$$\frac{\sqrt{x^{2} - 1}}{x}$$
sqrt(x^2 - 1)/x
Detail solution
  1. Apply the quotient rule, which is:

    and .

    To find :

    1. Let .

    2. Apply the power rule: goes to

    3. Then, apply the chain rule. Multiply by :

      1. Differentiate term by term:

        1. The derivative of the constant is zero.

        2. Apply the power rule: goes to

        The result is:

      The result of the chain rule is:

    To find :

    1. Apply the power rule: goes to

    Now plug in to the quotient rule:

  2. Now simplify:


The answer is:

The graph
The first derivative [src]
                 ________
                /  2     
     1        \/  x  - 1 
----------- - -----------
   ________         2    
  /  2             x     
\/  x  - 1               
$$\frac{1}{\sqrt{x^{2} - 1}} - \frac{\sqrt{x^{2} - 1}}{x^{2}}$$
The second derivative [src]
                          2                   
                         x                    
                 -1 + -------        _________
                            2       /       2 
       2              -1 + x    2*\/  -1 + x  
- ------------ - ------------ + --------------
     _________      _________          2      
    /       2      /       2          x       
  \/  -1 + x     \/  -1 + x                   
----------------------------------------------
                      x                       
$$\frac{- \frac{\frac{x^{2}}{x^{2} - 1} - 1}{\sqrt{x^{2} - 1}} - \frac{2}{\sqrt{x^{2} - 1}} + \frac{2 \sqrt{x^{2} - 1}}{x^{2}}}{x}$$
The third derivative [src]
  /         2                                                   2   \
  |        x                                                   x    |
  |-1 + -------        _________                       -1 + ------- |
  |           2       /       2                                   2 |
  |     -1 + x    2*\/  -1 + x            2                 -1 + x  |
3*|------------ - -------------- + --------------- + ---------------|
  |         3/2          4               _________         _________|
  |/      2\            x           2   /       2     2   /       2 |
  \\-1 + x /                       x *\/  -1 + x     x *\/  -1 + x  /
$$3 \left(\frac{\frac{x^{2}}{x^{2} - 1} - 1}{\left(x^{2} - 1\right)^{\frac{3}{2}}} + \frac{\frac{x^{2}}{x^{2} - 1} - 1}{x^{2} \sqrt{x^{2} - 1}} + \frac{2}{x^{2} \sqrt{x^{2} - 1}} - \frac{2 \sqrt{x^{2} - 1}}{x^{4}}\right)$$
The graph
Derivative of sqrt(x^2-1)/x