Mister Exam

Other calculators


sin(x/3)^(2)*cot(x/2)
  • How to use it?

  • Derivative of:
  • Derivative of x^2-7*x Derivative of x^2-7*x
  • Derivative of ln(1-x) Derivative of ln(1-x)
  • Derivative of ln(-x) Derivative of ln(-x)
  • Derivative of ln(x+2) Derivative of ln(x+2)
  • Identical expressions

  • sin(x/ three)^(two)*cot(x/ two)
  • sinus of (x divide by 3) to the power of (2) multiply by cotangent of (x divide by 2)
  • sinus of (x divide by three) to the power of (two) multiply by cotangent of (x divide by two)
  • sin(x/3)(2)*cot(x/2)
  • sinx/32*cotx/2
  • sin(x/3)^(2)cot(x/2)
  • sin(x/3)(2)cot(x/2)
  • sinx/32cotx/2
  • sinx/3^2cotx/2
  • sin(x divide by 3)^(2)*cot(x divide by 2)

Derivative of sin(x/3)^(2)*cot(x/2)

Function f() - derivative -N order at the point
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
   2/x\    /x\
sin |-|*cot|-|
    \3/    \2/
$$\sin^{2}{\left(\frac{x}{3} \right)} \cot{\left(\frac{x}{2} \right)}$$
sin(x/3)^2*cot(x/2)
Detail solution
  1. Apply the product rule:

    ; to find :

    1. Let .

    2. Apply the power rule: goes to

    3. Then, apply the chain rule. Multiply by :

      1. Let .

      2. The derivative of sine is cosine:

      3. Then, apply the chain rule. Multiply by :

        1. The derivative of a constant times a function is the constant times the derivative of the function.

          1. Apply the power rule: goes to

          So, the result is:

        The result of the chain rule is:

      The result of the chain rule is:

    ; to find :

    1. There are multiple ways to do this derivative.

      Method #1

      1. Rewrite the function to be differentiated:

      2. Let .

      3. Apply the power rule: goes to

      4. Then, apply the chain rule. Multiply by :

        1. Rewrite the function to be differentiated:

        2. Apply the quotient rule, which is:

          and .

          To find :

          1. Let .

          2. The derivative of sine is cosine:

          3. Then, apply the chain rule. Multiply by :

            1. The derivative of a constant times a function is the constant times the derivative of the function.

              1. Apply the power rule: goes to

              So, the result is:

            The result of the chain rule is:

          To find :

          1. Let .

          2. The derivative of cosine is negative sine:

          3. Then, apply the chain rule. Multiply by :

            1. The derivative of a constant times a function is the constant times the derivative of the function.

              1. Apply the power rule: goes to

              So, the result is:

            The result of the chain rule is:

          Now plug in to the quotient rule:

        The result of the chain rule is:

      Method #2

      1. Rewrite the function to be differentiated:

      2. Apply the quotient rule, which is:

        and .

        To find :

        1. Let .

        2. The derivative of cosine is negative sine:

        3. Then, apply the chain rule. Multiply by :

          1. The derivative of a constant times a function is the constant times the derivative of the function.

            1. Apply the power rule: goes to

            So, the result is:

          The result of the chain rule is:

        To find :

        1. Let .

        2. The derivative of sine is cosine:

        3. Then, apply the chain rule. Multiply by :

          1. The derivative of a constant times a function is the constant times the derivative of the function.

            1. Apply the power rule: goes to

            So, the result is:

          The result of the chain rule is:

        Now plug in to the quotient rule:

    The result is:

  2. Now simplify:


The answer is:

The graph
The first derivative [src]
        /         2/x\\        /x\    /x\    /x\
        |      cot |-||   2*cos|-|*cot|-|*sin|-|
   2/x\ |  1       \2/|        \3/    \2/    \3/
sin |-|*|- - - -------| + ----------------------
    \3/ \  2      2   /             3           
$$\left(- \frac{\cot^{2}{\left(\frac{x}{2} \right)}}{2} - \frac{1}{2}\right) \sin^{2}{\left(\frac{x}{3} \right)} + \frac{2 \sin{\left(\frac{x}{3} \right)} \cos{\left(\frac{x}{3} \right)} \cot{\left(\frac{x}{2} \right)}}{3}$$
The second derivative [src]
    /   2/x\      2/x\\    /x\      /       2/x\\    /x\    /x\        2/x\ /       2/x\\    /x\
- 4*|sin |-| - cos |-||*cot|-| - 12*|1 + cot |-||*cos|-|*sin|-| + 9*sin |-|*|1 + cot |-||*cot|-|
    \    \3/       \3//    \2/      \        \2//    \3/    \3/         \3/ \        \2//    \2/
------------------------------------------------------------------------------------------------
                                               18                                               
$$\frac{- 4 \left(\sin^{2}{\left(\frac{x}{3} \right)} - \cos^{2}{\left(\frac{x}{3} \right)}\right) \cot{\left(\frac{x}{2} \right)} + 9 \left(\cot^{2}{\left(\frac{x}{2} \right)} + 1\right) \sin^{2}{\left(\frac{x}{3} \right)} \cot{\left(\frac{x}{2} \right)} - 12 \left(\cot^{2}{\left(\frac{x}{2} \right)} + 1\right) \sin{\left(\frac{x}{3} \right)} \cos{\left(\frac{x}{3} \right)}}{18}$$
The third derivative [src]
/       2/x\\ /   2/x\      2/x\\        /x\    /x\    /x\      2/x\ /       2/x\\ /         2/x\\                                     
|1 + cot |-||*|sin |-| - cos |-||   8*cos|-|*cot|-|*sin|-|   sin |-|*|1 + cot |-||*|1 + 3*cot |-||                                     
\        \2// \    \3/       \3//        \3/    \2/    \3/       \3/ \        \2// \          \2//   /       2/x\\    /x\    /x\    /x\
--------------------------------- - ---------------------- - ------------------------------------- + |1 + cot |-||*cos|-|*cot|-|*sin|-|
                3                             27                               4                     \        \2//    \3/    \2/    \3/
$$\frac{\left(\sin^{2}{\left(\frac{x}{3} \right)} - \cos^{2}{\left(\frac{x}{3} \right)}\right) \left(\cot^{2}{\left(\frac{x}{2} \right)} + 1\right)}{3} - \frac{\left(\cot^{2}{\left(\frac{x}{2} \right)} + 1\right) \left(3 \cot^{2}{\left(\frac{x}{2} \right)} + 1\right) \sin^{2}{\left(\frac{x}{3} \right)}}{4} + \left(\cot^{2}{\left(\frac{x}{2} \right)} + 1\right) \sin{\left(\frac{x}{3} \right)} \cos{\left(\frac{x}{3} \right)} \cot{\left(\frac{x}{2} \right)} - \frac{8 \sin{\left(\frac{x}{3} \right)} \cos{\left(\frac{x}{3} \right)} \cot{\left(\frac{x}{2} \right)}}{27}$$
The graph
Derivative of sin(x/3)^(2)*cot(x/2)