Mister Exam

Other calculators


sqrt(x)*sin(2*x)

Derivative of sqrt(x)*sin(2*x)

Function f() - derivative -N order at the point
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
  ___         
\/ x *sin(2*x)
$$\sqrt{x} \sin{\left(2 x \right)}$$
d /  ___         \
--\\/ x *sin(2*x)/
dx                
$$\frac{d}{d x} \sqrt{x} \sin{\left(2 x \right)}$$
Detail solution
  1. Apply the product rule:

    ; to find :

    1. Apply the power rule: goes to

    ; to find :

    1. Let .

    2. The derivative of sine is cosine:

    3. Then, apply the chain rule. Multiply by :

      1. The derivative of a constant times a function is the constant times the derivative of the function.

        1. Apply the power rule: goes to

        So, the result is:

      The result of the chain rule is:

    The result is:

  2. Now simplify:


The answer is:

The graph
The first derivative [src]
sin(2*x)       ___         
-------- + 2*\/ x *cos(2*x)
    ___                    
2*\/ x                     
$$2 \sqrt{x} \cos{\left(2 x \right)} + \frac{\sin{\left(2 x \right)}}{2 \sqrt{x}}$$
The second derivative [src]
      ___            2*cos(2*x)   sin(2*x)
- 4*\/ x *sin(2*x) + ---------- - --------
                         ___          3/2 
                       \/ x        4*x    
$$- 4 \sqrt{x} \sin{\left(2 x \right)} + \frac{2 \cos{\left(2 x \right)}}{\sqrt{x}} - \frac{\sin{\left(2 x \right)}}{4 x^{\frac{3}{2}}}$$
The third derivative [src]
      ___            6*sin(2*x)   3*cos(2*x)   3*sin(2*x)
- 8*\/ x *cos(2*x) - ---------- - ---------- + ----------
                         ___           3/2          5/2  
                       \/ x         2*x          8*x     
$$- 8 \sqrt{x} \cos{\left(2 x \right)} - \frac{6 \sin{\left(2 x \right)}}{\sqrt{x}} - \frac{3 \cos{\left(2 x \right)}}{2 x^{\frac{3}{2}}} + \frac{3 \sin{\left(2 x \right)}}{8 x^{\frac{5}{2}}}$$
The graph
Derivative of sqrt(x)*sin(2*x)