2
sin (x)
___
\/ x
(sqrt(x))^(sin(x)^2)
Don't know the steps in finding this derivative.
But the derivative is
The answer is:
2
sin (x)
------- / 2 \
2 |sin (x) / ___\ |
x *|------- + 2*cos(x)*log\\/ x /*sin(x)|
\ 2*x /
2
sin (x) / 2 /sin(x) \ /sin(x) / ___\\\
------- | 2 sin (x)*|------ + 2*cos(x)*log(x)|*|------ + 4*cos(x)*log\\/ x /||
2 | 2 / ___\ 2 / ___\ sin (x) 2*cos(x)*sin(x) \ x / \ x /|
x *|- 2*sin (x)*log\\/ x / + 2*cos (x)*log\\/ x / - ------- + --------------- + -----------------------------------------------------------------|
| 2 x 4 |
\ 2*x /
/ / 2 \ / 2 \ \
2 | /sin(x) \ |sin (x) 2 / ___\ 2 / ___\ 4*cos(x)*sin(x)| /sin(x) / ___\\ |sin (x) 2 2 4*cos(x)*sin(x)| 2 |
sin (x) | |------ + 2*cos(x)*log(x)|*|------- - 4*cos (x)*log\\/ x / + 4*sin (x)*log\\/ x / - ---------------|*sin(x) |------ + 4*cos(x)*log\\/ x /|*|------- - 2*cos (x)*log(x) + 2*sin (x)*log(x) - ---------------|*sin(x) /sin(x) \ 3 /sin(x) / ___\\|
------- | 2 2 2 \ x / | 2 x | \ x / | 2 x | |------ + 2*cos(x)*log(x)| *sin (x)*|------ + 4*cos(x)*log\\/ x /||
2 |sin (x) 3*sin (x) 3*cos (x) / ___\ 3*cos(x)*sin(x) \ x / \ x / \ x / \ x /|
x *|------- - --------- + --------- - 8*cos(x)*log\\/ x /*sin(x) - --------------- - ----------------------------------------------------------------------------------------------------------- - ------------------------------------------------------------------------------------------------------- + ------------------------------------------------------------------|
| 3 x x 2 2 4 8 |
\ x x /