log(sec(x) + tan(x))
log(sec(x) + tan(x))
Let .
The derivative of is .
Then, apply the chain rule. Multiply by :
Differentiate term by term:
Rewrite the function to be differentiated:
Let .
Apply the power rule: goes to
Then, apply the chain rule. Multiply by :
The derivative of cosine is negative sine:
The result of the chain rule is:
Rewrite the function to be differentiated:
Apply the quotient rule, which is:
and .
To find :
The derivative of sine is cosine:
To find :
The derivative of cosine is negative sine:
Now plug in to the quotient rule:
The result is:
The result of the chain rule is:
Now simplify:
The answer is:
2
1 + tan (x) + sec(x)*tan(x)
---------------------------
sec(x) + tan(x)
2
/ 2 \
2 / 2 \ \1 + tan (x) + sec(x)*tan(x)/ / 2 \
tan (x)*sec(x) + \1 + tan (x)/*sec(x) - ------------------------------ + 2*\1 + tan (x)/*tan(x)
sec(x) + tan(x)
-----------------------------------------------------------------------------------------------
sec(x) + tan(x)
3
2 / 2 \ / 2 \ / 2 / 2 \ / 2 \ \
/ 2 \ 3 2*\1 + tan (x) + sec(x)*tan(x)/ 2 / 2 \ 3*\1 + tan (x) + sec(x)*tan(x)/*\tan (x)*sec(x) + \1 + tan (x)/*sec(x) + 2*\1 + tan (x)/*tan(x)/ / 2 \
2*\1 + tan (x)/ + tan (x)*sec(x) + -------------------------------- + 4*tan (x)*\1 + tan (x)/ - ------------------------------------------------------------------------------------------------ + 5*\1 + tan (x)/*sec(x)*tan(x)
2 sec(x) + tan(x)
(sec(x) + tan(x))
---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------
sec(x) + tan(x)