Mister Exam

Other calculators

Derivative of sqrt(x)*exp^(sqrt(x))

Function f() - derivative -N order at the point
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
         ___
  ___  \/ x 
\/ x *E     
$$e^{\sqrt{x}} \sqrt{x}$$
sqrt(x)*E^(sqrt(x))
Detail solution
  1. Apply the product rule:

    ; to find :

    1. Apply the power rule: goes to

    ; to find :

    1. Let .

    2. The derivative of is itself.

    3. Then, apply the chain rule. Multiply by :

      1. Apply the power rule: goes to

      The result of the chain rule is:

    The result is:

  2. Now simplify:


The answer is:

The graph
The first derivative [src]
   ___       ___
 \/ x      \/ x 
e         e     
------ + -------
  2          ___
         2*\/ x 
$$\frac{e^{\sqrt{x}}}{2} + \frac{e^{\sqrt{x}}}{2 \sqrt{x}}$$
The second derivative [src]
                                   ___
/   1     2     ___ /1    1  \\  \/ x 
|- ---- + - + \/ x *|- - ----||*e     
|   3/2   x         |x    3/2||       
\  x                \    x   //       
--------------------------------------
                  4                   
$$\frac{\left(\sqrt{x} \left(\frac{1}{x} - \frac{1}{x^{\frac{3}{2}}}\right) + \frac{2}{x} - \frac{1}{x^{\frac{3}{2}}}\right) e^{\sqrt{x}}}{4}$$
The third derivative [src]
/                                           /1    1  \\       
|                                         3*|- - ----||       
|                                           |x    3/2||    ___
|  3     3       ___ / 1     3     3  \     \    x   /|  \/ x 
|- -- + ---- + \/ x *|---- - -- + ----| + ------------|*e     
|   2    5/2         | 3/2    2    5/2|        ___    |       
\  x    x            \x      x    x   /      \/ x     /       
--------------------------------------------------------------
                              8                               
$$\frac{\left(\sqrt{x} \left(- \frac{3}{x^{2}} + \frac{1}{x^{\frac{3}{2}}} + \frac{3}{x^{\frac{5}{2}}}\right) - \frac{3}{x^{2}} + \frac{3 \left(\frac{1}{x} - \frac{1}{x^{\frac{3}{2}}}\right)}{\sqrt{x}} + \frac{3}{x^{\frac{5}{2}}}\right) e^{\sqrt{x}}}{8}$$