Mister Exam

Other calculators

Derivative of sqrt(x-x^2)

Function f() - derivative -N order at the point
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
   ________
  /      2 
\/  x - x  
$$\sqrt{- x^{2} + x}$$
sqrt(x - x^2)
Detail solution
  1. Let .

  2. Apply the power rule: goes to

  3. Then, apply the chain rule. Multiply by :

    1. Differentiate term by term:

      1. Apply the power rule: goes to

      2. The derivative of a constant times a function is the constant times the derivative of the function.

        1. Apply the power rule: goes to

        So, the result is:

      The result is:

    The result of the chain rule is:

  4. Now simplify:


The answer is:

The graph
The first derivative [src]
  1/2 - x  
-----------
   ________
  /      2 
\/  x - x  
$$\frac{\frac{1}{2} - x}{\sqrt{- x^{2} + x}}$$
The second derivative [src]
 /              2\ 
 |    (-1 + 2*x) | 
-|1 + -----------| 
 \    4*x*(1 - x)/ 
-------------------
     ___________   
   \/ x*(1 - x)    
$$- \frac{1 + \frac{\left(2 x - 1\right)^{2}}{4 x \left(1 - x\right)}}{\sqrt{x \left(1 - x\right)}}$$
3-я производная [src]
              /              2\
              |    (-1 + 2*x) |
-3*(-1 + 2*x)*|4 + -----------|
              \     x*(1 - x) /
-------------------------------
                     3/2       
        8*(x*(1 - x))          
$$- \frac{3 \left(4 + \frac{\left(2 x - 1\right)^{2}}{x \left(1 - x\right)}\right) \left(2 x - 1\right)}{8 \left(x \left(1 - x\right)\right)^{\frac{3}{2}}}$$
The third derivative [src]
              /              2\
              |    (-1 + 2*x) |
-3*(-1 + 2*x)*|4 + -----------|
              \     x*(1 - x) /
-------------------------------
                     3/2       
        8*(x*(1 - x))          
$$- \frac{3 \left(4 + \frac{\left(2 x - 1\right)^{2}}{x \left(1 - x\right)}\right) \left(2 x - 1\right)}{8 \left(x \left(1 - x\right)\right)^{\frac{3}{2}}}$$