Mister Exam

Derivative of sqrt(x)/ln(x)

Function f() - derivative -N order at the point
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
  ___ 
\/ x  
------
log(x)
$$\frac{\sqrt{x}}{\log{\left(x \right)}}$$
sqrt(x)/log(x)
Detail solution
  1. Apply the quotient rule, which is:

    and .

    To find :

    1. Apply the power rule: goes to

    To find :

    1. The derivative of is .

    Now plug in to the quotient rule:

  2. Now simplify:


The answer is:

The graph
The first derivative [src]
      1                1      
-------------- - -------------
    ___            ___    2   
2*\/ x *log(x)   \/ x *log (x)
$$\frac{1}{2 \sqrt{x} \log{\left(x \right)}} - \frac{1}{\sqrt{x} \log{\left(x \right)}^{2}}$$
The second derivative [src]
                     2   
               1 + ------
  1     1          log(x)
- - - ------ + ----------
  4   log(x)     log(x)  
-------------------------
        3/2              
       x   *log(x)       
$$\frac{\frac{1 + \frac{2}{\log{\left(x \right)}}}{\log{\left(x \right)}} - \frac{1}{4} - \frac{1}{\log{\left(x \right)}}}{x^{\frac{3}{2}} \log{\left(x \right)}}$$
The third derivative [src]
                 /      3         3   \                 
               2*|1 + ------ + -------|     /      2   \
                 |    log(x)      2   |   3*|1 + ------|
3      3         \             log (x)/     \    log(x)/
- + -------- - ------------------------ + --------------
8   4*log(x)            log(x)               2*log(x)   
--------------------------------------------------------
                       5/2                              
                      x   *log(x)                       
$$\frac{\frac{3 \left(1 + \frac{2}{\log{\left(x \right)}}\right)}{2 \log{\left(x \right)}} - \frac{2 \left(1 + \frac{3}{\log{\left(x \right)}} + \frac{3}{\log{\left(x \right)}^{2}}\right)}{\log{\left(x \right)}} + \frac{3}{8} + \frac{3}{4 \log{\left(x \right)}}}{x^{\frac{5}{2}} \log{\left(x \right)}}$$