Mister Exam

Other calculators

Derivative of arcctg(sqrt(x))/ln(x+1)

Function f() - derivative -N order at the point
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
    /  ___\
acot\\/ x /
-----------
 log(x + 1)
$$\frac{\operatorname{acot}{\left(\sqrt{x} \right)}}{\log{\left(x + 1 \right)}}$$
acot(sqrt(x))/log(x + 1)
The graph
The first derivative [src]
          /  ___\                                 
      acot\\/ x /                   1             
- ------------------- - --------------------------
             2              ___                   
  (x + 1)*log (x + 1)   2*\/ x *(1 + x)*log(x + 1)
$$- \frac{\operatorname{acot}{\left(\sqrt{x} \right)}}{\left(x + 1\right) \log{\left(x + 1 \right)}^{2}} - \frac{1}{2 \sqrt{x} \left(x + 1\right) \log{\left(x + 1 \right)}}$$
The second derivative [src]
1     2                                /        2     \     /  ___\
- + -----                              |1 + ----------|*acot\\/ x /
x   1 + x              1               \    log(1 + x)/            
--------- + ------------------------ + ----------------------------
     ___      ___                           (1 + x)*log(1 + x)     
 4*\/ x     \/ x *(1 + x)*log(1 + x)                               
-------------------------------------------------------------------
                         (1 + x)*log(1 + x)                        
$$\frac{\frac{\left(1 + \frac{2}{\log{\left(x + 1 \right)}}\right) \operatorname{acot}{\left(\sqrt{x} \right)}}{\left(x + 1\right) \log{\left(x + 1 \right)}} + \frac{\frac{2}{x + 1} + \frac{1}{x}}{4 \sqrt{x}} + \frac{1}{\sqrt{x} \left(x + 1\right) \log{\left(x + 1 \right)}}}{\left(x + 1\right) \log{\left(x + 1 \right)}}$$
The third derivative [src]
 /3       8           4         /        3             3     \     /  ___\                                                           \ 
 |-- + -------- + ---------   2*|1 + ---------- + -----------|*acot\\/ x /          /        2     \               /1     2  \       | 
 | 2          2   x*(1 + x)     |    log(1 + x)      2       |                    3*|1 + ----------|             3*|- + -----|       | 
 |x    (1 + x)                  \                 log (1 + x)/                      \    log(1 + x)/               \x   1 + x/       | 
-|------------------------- + -------------------------------------------- + --------------------------- + --------------------------| 
 |             ___                               2                               ___        2                  ___                   | 
 \         8*\/ x                         (1 + x) *log(1 + x)                2*\/ x *(1 + x) *log(1 + x)   4*\/ x *(1 + x)*log(1 + x)/ 
---------------------------------------------------------------------------------------------------------------------------------------
                                                           (1 + x)*log(1 + x)                                                          
$$- \frac{\frac{2 \left(1 + \frac{3}{\log{\left(x + 1 \right)}} + \frac{3}{\log{\left(x + 1 \right)}^{2}}\right) \operatorname{acot}{\left(\sqrt{x} \right)}}{\left(x + 1\right)^{2} \log{\left(x + 1 \right)}} + \frac{3 \left(1 + \frac{2}{\log{\left(x + 1 \right)}}\right)}{2 \sqrt{x} \left(x + 1\right)^{2} \log{\left(x + 1 \right)}} + \frac{\frac{8}{\left(x + 1\right)^{2}} + \frac{4}{x \left(x + 1\right)} + \frac{3}{x^{2}}}{8 \sqrt{x}} + \frac{3 \left(\frac{2}{x + 1} + \frac{1}{x}\right)}{4 \sqrt{x} \left(x + 1\right) \log{\left(x + 1 \right)}}}{\left(x + 1\right) \log{\left(x + 1 \right)}}$$