Detail solution
-
Let .
-
The derivative of sine is cosine:
-
Then, apply the chain rule. Multiply by :
-
The derivative of is .
The result of the chain rule is:
The answer is:
The first derivative
[src]
cos(log(x))
-----------
x
$$\frac{\cos{\left(\log{\left(x \right)} \right)}}{x}$$
The second derivative
[src]
-(cos(log(x)) + sin(log(x)))
-----------------------------
2
x
$$- \frac{\sin{\left(\log{\left(x \right)} \right)} + \cos{\left(\log{\left(x \right)} \right)}}{x^{2}}$$
The third derivative
[src]
3*sin(log(x)) + cos(log(x))
---------------------------
3
x
$$\frac{3 \sin{\left(\log{\left(x \right)} \right)} + \cos{\left(\log{\left(x \right)} \right)}}{x^{3}}$$