Mister Exam

Other calculators


sqrt(16-x^2)

Derivative of sqrt(16-x^2)

Function f() - derivative -N order at the point
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
   _________
  /       2 
\/  16 - x  
$$\sqrt{- x^{2} + 16}$$
  /   _________\
d |  /       2 |
--\\/  16 - x  /
dx              
$$\frac{d}{d x} \sqrt{- x^{2} + 16}$$
Detail solution
  1. Let .

  2. Apply the power rule: goes to

  3. Then, apply the chain rule. Multiply by :

    1. Differentiate term by term:

      1. The derivative of the constant is zero.

      2. The derivative of a constant times a function is the constant times the derivative of the function.

        1. Apply the power rule: goes to

        So, the result is:

      The result is:

    The result of the chain rule is:


The answer is:

The graph
The first derivative [src]
    -x      
------------
   _________
  /       2 
\/  16 - x  
$$- \frac{x}{\sqrt{- x^{2} + 16}}$$
The second derivative [src]
 /        2  \ 
 |       x   | 
-|1 + -------| 
 |          2| 
 \    16 - x / 
---------------
     _________ 
    /       2  
  \/  16 - x   
$$- \frac{\frac{x^{2}}{- x^{2} + 16} + 1}{\sqrt{- x^{2} + 16}}$$
The third derivative [src]
     /        2  \
     |       x   |
-3*x*|1 + -------|
     |          2|
     \    16 - x /
------------------
            3/2   
   /      2\      
   \16 - x /      
$$- \frac{3 x \left(\frac{x^{2}}{- x^{2} + 16} + 1\right)}{\left(- x^{2} + 16\right)^{\frac{3}{2}}}$$
The graph
Derivative of sqrt(16-x^2)