4 / | | _________ | / 2 | \/ 16 - x dx | / -4
Integral(sqrt(16 - x^2), (x, -4, 4))
TrigSubstitutionRule(theta=_theta, func=4*sin(_theta), rewritten=16*cos(_theta)**2, substep=ConstantTimesRule(constant=16, other=cos(_theta)**2, substep=RewriteRule(rewritten=cos(2*_theta)/2 + 1/2, substep=AddRule(substeps=[ConstantTimesRule(constant=1/2, other=cos(2*_theta), substep=URule(u_var=_u, u_func=2*_theta, constant=1/2, substep=ConstantTimesRule(constant=1/2, other=cos(_u), substep=TrigRule(func='cos', arg=_u, context=cos(_u), symbol=_u), context=cos(_u), symbol=_u), context=cos(2*_theta), symbol=_theta), context=cos(2*_theta)/2, symbol=_theta), ConstantRule(constant=1/2, context=1/2, symbol=_theta)], context=cos(2*_theta)/2 + 1/2, symbol=_theta), context=cos(_theta)**2, symbol=_theta), context=16*cos(_theta)**2, symbol=_theta), restriction=(x > -4) & (x < 4), context=sqrt(16 - x**2), symbol=x)
Add the constant of integration:
The answer is:
/ | | _________ // _________ \ | / 2 || / 2 | | \/ 16 - x dx = C + |< /x\ x*\/ 16 - x | | ||8*asin|-| + -------------- for And(x > -4, x < 4)| / \\ \4/ 2 /
Use the examples entering the upper and lower limits of integration.