Mister Exam

Derivative of cos^2pix

Function f() - derivative -N order at the point
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
   2      
cos (pi*x)
cos2(πx)\cos^{2}{\left(\pi x \right)}
d /   2      \
--\cos (pi*x)/
dx            
ddxcos2(πx)\frac{d}{d x} \cos^{2}{\left(\pi x \right)}
Detail solution
  1. Let u=cos(πx)u = \cos{\left(\pi x \right)}.

  2. Apply the power rule: u2u^{2} goes to 2u2 u

  3. Then, apply the chain rule. Multiply by ddxcos(πx)\frac{d}{d x} \cos{\left(\pi x \right)}:

    1. Let u=πxu = \pi x.

    2. The derivative of cosine is negative sine:

      dducos(u)=sin(u)\frac{d}{d u} \cos{\left(u \right)} = - \sin{\left(u \right)}

    3. Then, apply the chain rule. Multiply by ddxπx\frac{d}{d x} \pi x:

      1. The derivative of a constant times a function is the constant times the derivative of the function.

        1. Apply the power rule: xx goes to 11

        So, the result is: π\pi

      The result of the chain rule is:

      πsin(πx)- \pi \sin{\left(\pi x \right)}

    The result of the chain rule is:

    2πsin(πx)cos(πx)- 2 \pi \sin{\left(\pi x \right)} \cos{\left(\pi x \right)}

  4. Now simplify:

    πsin(2πx)- \pi \sin{\left(2 \pi x \right)}


The answer is:

πsin(2πx)- \pi \sin{\left(2 \pi x \right)}

The graph
02468-8-6-4-2-10105-5
The first derivative [src]
-2*pi*cos(pi*x)*sin(pi*x)
2πsin(πx)cos(πx)- 2 \pi \sin{\left(\pi x \right)} \cos{\left(\pi x \right)}
The second derivative [src]
    2 /   2            2      \
2*pi *\sin (pi*x) - cos (pi*x)/
2π2(sin2(πx)cos2(πx))2 \pi^{2} \left(\sin^{2}{\left(\pi x \right)} - \cos^{2}{\left(\pi x \right)}\right)
The third derivative [src]
    3                    
8*pi *cos(pi*x)*sin(pi*x)
8π3sin(πx)cos(πx)8 \pi^{3} \sin{\left(\pi x \right)} \cos{\left(\pi x \right)}
The graph
Derivative of cos^2pix