Mister Exam

Other calculators


sqrt((1+x)/(1-x))

Derivative of sqrt((1+x)/(1-x))

Function f() - derivative -N order at the point
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
    _______
   / 1 + x 
  /  ----- 
\/   1 - x 
x+11x\sqrt{\frac{x + 1}{1 - x}}
  /    _______\
d |   / 1 + x |
--|  /  ----- |
dx\\/   1 - x /
ddxx+11x\frac{d}{d x} \sqrt{\frac{x + 1}{1 - x}}
Detail solution
  1. Let u=x+11xu = \frac{x + 1}{1 - x}.

  2. Apply the power rule: u\sqrt{u} goes to 12u\frac{1}{2 \sqrt{u}}

  3. Then, apply the chain rule. Multiply by ddxx+11x\frac{d}{d x} \frac{x + 1}{1 - x}:

    1. Apply the quotient rule, which is:

      ddxf(x)g(x)=f(x)ddxg(x)+g(x)ddxf(x)g2(x)\frac{d}{d x} \frac{f{\left(x \right)}}{g{\left(x \right)}} = \frac{- f{\left(x \right)} \frac{d}{d x} g{\left(x \right)} + g{\left(x \right)} \frac{d}{d x} f{\left(x \right)}}{g^{2}{\left(x \right)}}

      f(x)=x+1f{\left(x \right)} = x + 1 and g(x)=1xg{\left(x \right)} = 1 - x.

      To find ddxf(x)\frac{d}{d x} f{\left(x \right)}:

      1. Differentiate x+1x + 1 term by term:

        1. The derivative of the constant 11 is zero.

        2. Apply the power rule: xx goes to 11

        The result is: 11

      To find ddxg(x)\frac{d}{d x} g{\left(x \right)}:

      1. Differentiate 1x1 - x term by term:

        1. The derivative of the constant 11 is zero.

        2. The derivative of a constant times a function is the constant times the derivative of the function.

          1. Apply the power rule: xx goes to 11

          So, the result is: 1-1

        The result is: 1-1

      Now plug in to the quotient rule:

      2(1x)2\frac{2}{\left(1 - x\right)^{2}}

    The result of the chain rule is:

    1x+11x(1x)2\frac{1}{\sqrt{\frac{x + 1}{1 - x}} \left(1 - x\right)^{2}}

  4. Now simplify:

    1x1x1(x1)2\frac{1}{\sqrt{\frac{- x - 1}{x - 1}} \left(x - 1\right)^{2}}


The answer is:

1x1x1(x1)2\frac{1}{\sqrt{\frac{- x - 1}{x - 1}} \left(x - 1\right)^{2}}

The graph
02468-8-6-4-2-1010050
The first derivative [src]
    _______                                 
   / 1 + x          /    1         1 + x   \
  /  ----- *(1 - x)*|--------- + ----------|
\/   1 - x          |2*(1 - x)            2|
                    \            2*(1 - x) /
--------------------------------------------
                   1 + x                    
x+11x(1x)(12(1x)+x+12(1x)2)x+1\frac{\sqrt{\frac{x + 1}{1 - x}} \left(1 - x\right) \left(\frac{1}{2 \cdot \left(1 - x\right)} + \frac{x + 1}{2 \left(1 - x\right)^{2}}\right)}{x + 1}
The second derivative [src]
                             /                       1 + x \
    ___________              |                   1 - ------|
   / -(1 + x)   /    1 + x \ |    2       2          -1 + x|
  /  --------- *|1 - ------|*|- ----- - ------ + ----------|
\/     -1 + x   \    -1 + x/ \  1 + x   -1 + x     1 + x   /
------------------------------------------------------------
                         4*(1 + x)                          
x+1x1(1x+1x1)(1x+1x1x+12x+12x1)4(x+1)\frac{\sqrt{- \frac{x + 1}{x - 1}} \cdot \left(1 - \frac{x + 1}{x - 1}\right) \left(\frac{1 - \frac{x + 1}{x - 1}}{x + 1} - \frac{2}{x + 1} - \frac{2}{x - 1}\right)}{4 \left(x + 1\right)}
The third derivative [src]
                             /                                                                       2                     \
                             |                                            /    1 + x \   /    1 + x \        /    1 + x \  |
    ___________              |                                          3*|1 - ------|   |1 - ------|      3*|1 - ------|  |
   / -(1 + x)   /    1 + x \ |   1           1              1             \    -1 + x/   \    -1 + x/        \    -1 + x/  |
  /  --------- *|1 - ------|*|-------- + --------- + ---------------- - -------------- + ------------- - ------------------|
\/     -1 + x   \    -1 + x/ |       2           2   (1 + x)*(-1 + x)              2                2    4*(1 + x)*(-1 + x)|
                             \(1 + x)    (-1 + x)                         4*(1 + x)        8*(1 + x)                       /
----------------------------------------------------------------------------------------------------------------------------
                                                           1 + x                                                            
x+1x1(1x+1x1)((1x+1x1)28(x+1)23(1x+1x1)4(x+1)23(1x+1x1)4(x1)(x+1)+1(x+1)2+1(x1)(x+1)+1(x1)2)x+1\frac{\sqrt{- \frac{x + 1}{x - 1}} \cdot \left(1 - \frac{x + 1}{x - 1}\right) \left(\frac{\left(1 - \frac{x + 1}{x - 1}\right)^{2}}{8 \left(x + 1\right)^{2}} - \frac{3 \cdot \left(1 - \frac{x + 1}{x - 1}\right)}{4 \left(x + 1\right)^{2}} - \frac{3 \cdot \left(1 - \frac{x + 1}{x - 1}\right)}{4 \left(x - 1\right) \left(x + 1\right)} + \frac{1}{\left(x + 1\right)^{2}} + \frac{1}{\left(x - 1\right) \left(x + 1\right)} + \frac{1}{\left(x - 1\right)^{2}}\right)}{x + 1}
The graph
Derivative of sqrt((1+x)/(1-x))