_______ / 1 + x / ----- \/ 1 - x
/ _______\ d | / 1 + x | --| / ----- | dx\\/ 1 - x /
Let .
Apply the power rule: goes to
Then, apply the chain rule. Multiply by :
Apply the quotient rule, which is:
and .
To find :
Differentiate term by term:
The derivative of the constant is zero.
Apply the power rule: goes to
The result is:
To find :
Differentiate term by term:
The derivative of the constant is zero.
The derivative of a constant times a function is the constant times the derivative of the function.
Apply the power rule: goes to
So, the result is:
The result is:
Now plug in to the quotient rule:
The result of the chain rule is:
Now simplify:
The answer is:
_______ / 1 + x / 1 1 + x \ / ----- *(1 - x)*|--------- + ----------| \/ 1 - x |2*(1 - x) 2| \ 2*(1 - x) / -------------------------------------------- 1 + x
/ 1 + x \ ___________ | 1 - ------| / -(1 + x) / 1 + x \ | 2 2 -1 + x| / --------- *|1 - ------|*|- ----- - ------ + ----------| \/ -1 + x \ -1 + x/ \ 1 + x -1 + x 1 + x / ------------------------------------------------------------ 4*(1 + x)
/ 2 \ | / 1 + x \ / 1 + x \ / 1 + x \ | ___________ | 3*|1 - ------| |1 - ------| 3*|1 - ------| | / -(1 + x) / 1 + x \ | 1 1 1 \ -1 + x/ \ -1 + x/ \ -1 + x/ | / --------- *|1 - ------|*|-------- + --------- + ---------------- - -------------- + ------------- - ------------------| \/ -1 + x \ -1 + x/ | 2 2 (1 + x)*(-1 + x) 2 2 4*(1 + x)*(-1 + x)| \(1 + x) (-1 + x) 4*(1 + x) 8*(1 + x) / ---------------------------------------------------------------------------------------------------------------------------- 1 + x