Mister Exam

Other calculators:


sqrt((1+x)/(1-x))

Limit of the function sqrt((1+x)/(1-x))

at
v

For end points:

The graph:

from to

Piecewise:

The solution

You have entered [src]
         _______
        / 1 + x 
 lim   /  ----- 
x->0+\/   1 - x 
limx0+x+11x\lim_{x \to 0^+} \sqrt{\frac{x + 1}{1 - x}}
Limit(sqrt((1 + x)/(1 - x)), x, 0)
Lopital's rule
There is no sense to apply Lopital's rule to this function since there is no indeterminateness of 0/0 or oo/oo type
The graph
02468-8-6-4-2-101005
Rapid solution [src]
1
11
One‐sided limits [src]
         _______
        / 1 + x 
 lim   /  ----- 
x->0+\/   1 - x 
limx0+x+11x\lim_{x \to 0^+} \sqrt{\frac{x + 1}{1 - x}}
1
11
= 1.0
         _______
        / 1 + x 
 lim   /  ----- 
x->0-\/   1 - x 
limx0x+11x\lim_{x \to 0^-} \sqrt{\frac{x + 1}{1 - x}}
1
11
= 1.0
= 1.0
Other limits x→0, -oo, +oo, 1
limx0x+11x=1\lim_{x \to 0^-} \sqrt{\frac{x + 1}{1 - x}} = 1
More at x→0 from the left
limx0+x+11x=1\lim_{x \to 0^+} \sqrt{\frac{x + 1}{1 - x}} = 1
limxx+11x=i\lim_{x \to \infty} \sqrt{\frac{x + 1}{1 - x}} = i
More at x→oo
limx1x+11x=\lim_{x \to 1^-} \sqrt{\frac{x + 1}{1 - x}} = \infty
More at x→1 from the left
limx1+x+11x=i\lim_{x \to 1^+} \sqrt{\frac{x + 1}{1 - x}} = \infty i
More at x→1 from the right
limxx+11x=i\lim_{x \to -\infty} \sqrt{\frac{x + 1}{1 - x}} = i
More at x→-oo
Numerical answer [src]
1.0
1.0
The graph
Limit of the function sqrt((1+x)/(1-x))