Mister Exam

Other calculators


(1+x)/(4-x^2)

Derivative of (1+x)/(4-x^2)

Function f() - derivative -N order at the point
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
1 + x 
------
     2
4 - x 
$$\frac{x + 1}{4 - x^{2}}$$
(1 + x)/(4 - x^2)
Detail solution
  1. Apply the quotient rule, which is:

    and .

    To find :

    1. Differentiate term by term:

      1. The derivative of the constant is zero.

      2. Apply the power rule: goes to

      The result is:

    To find :

    1. Differentiate term by term:

      1. The derivative of the constant is zero.

      2. The derivative of a constant times a function is the constant times the derivative of the function.

        1. Apply the power rule: goes to

        So, the result is:

      The result is:

    Now plug in to the quotient rule:

  2. Now simplify:


The answer is:

The graph
The first derivative [src]
  1      2*x*(1 + x)
------ + -----------
     2            2 
4 - x     /     2\  
          \4 - x /  
$$\frac{2 x \left(x + 1\right)}{\left(4 - x^{2}\right)^{2}} + \frac{1}{4 - x^{2}}$$
The second derivative [src]
  /              /          2 \\
  |              |       4*x  ||
2*|2*x - (1 + x)*|-1 + -------||
  |              |           2||
  \              \     -4 + x //
--------------------------------
                    2           
           /      2\            
           \-4 + x /            
$$\frac{2 \left(2 x - \left(x + 1\right) \left(\frac{4 x^{2}}{x^{2} - 4} - 1\right)\right)}{\left(x^{2} - 4\right)^{2}}$$
The third derivative [src]
  /                          /          2 \\
  |                          |       2*x  ||
  |              4*x*(1 + x)*|-1 + -------||
  |         2                |           2||
  |      4*x                 \     -4 + x /|
6*|1 - ------- + --------------------------|
  |          2                  2          |
  \    -4 + x             -4 + x           /
--------------------------------------------
                          2                 
                 /      2\                  
                 \-4 + x /                  
$$\frac{6 \left(- \frac{4 x^{2}}{x^{2} - 4} + \frac{4 x \left(x + 1\right) \left(\frac{2 x^{2}}{x^{2} - 4} - 1\right)}{x^{2} - 4} + 1\right)}{\left(x^{2} - 4\right)^{2}}$$
The graph
Derivative of (1+x)/(4-x^2)