____________ / / 1\ / log|x + -| \/ \ x/
sqrt(log(x + 1/x))
Let .
Apply the power rule: goes to
Then, apply the chain rule. Multiply by :
Let .
The derivative of is .
Then, apply the chain rule. Multiply by :
Differentiate term by term:
Apply the power rule: goes to
Apply the power rule: goes to
The result is:
The result of the chain rule is:
The result of the chain rule is:
Now simplify:
The answer is:
1
1 - --
2
x
--------------------------
____________
/ 1\ / / 1\
2*|x + -|* / log|x + -|
\ x/ \/ \ x/
2 2
/ 1 \ / 1 \
|1 - --| |1 - --|
| 2| | 2|
1 \ x / \ x /
-- - --------- - --------------------
3 / 1\ / 1\ / 1\
x 2*|x + -| 4*|x + -|*log|x + -|
\ x/ \ x/ \ x/
-------------------------------------
____________
/ 1\ / / 1\
|x + -|* / log|x + -|
\ x/ \/ \ x/
3 3 3
/ 1 \ / 1 \ / 1 \ / 1 \ / 1 \
|1 - --| 3*|1 - --| 3*|1 - --| 3*|1 - --| 3*|1 - --|
| 2| | 2| | 2| | 2| | 2|
3 \ x / \ x / \ x / \ x / \ x /
- -- + --------- - ---------- + --------------------- + ---------------------- - -----------------------
4 2 3 / 1\ 2 2 3 / 1\ / 1\
x / 1\ x *|x + -| / 1\ / 1\ / 1\ 2/ 1\ 2*x *|x + -|*log|x + -|
|x + -| \ x/ 4*|x + -| *log|x + -| 8*|x + -| *log |x + -| \ x/ \ x/
\ x/ \ x/ \ x/ \ x/ \ x/
--------------------------------------------------------------------------------------------------------
____________
/ 1\ / / 1\
|x + -|* / log|x + -|
\ x/ \/ \ x/