____________ / / 1\ / log|x + -| \/ \ x/
sqrt(log(x + 1/x))
Let .
Apply the power rule: goes to
Then, apply the chain rule. Multiply by :
Let .
The derivative of is .
Then, apply the chain rule. Multiply by :
Differentiate term by term:
Apply the power rule: goes to
Apply the power rule: goes to
The result is:
The result of the chain rule is:
The result of the chain rule is:
Now simplify:
The answer is:
1 1 - -- 2 x -------------------------- ____________ / 1\ / / 1\ 2*|x + -|* / log|x + -| \ x/ \/ \ x/
2 2 / 1 \ / 1 \ |1 - --| |1 - --| | 2| | 2| 1 \ x / \ x / -- - --------- - -------------------- 3 / 1\ / 1\ / 1\ x 2*|x + -| 4*|x + -|*log|x + -| \ x/ \ x/ \ x/ ------------------------------------- ____________ / 1\ / / 1\ |x + -|* / log|x + -| \ x/ \/ \ x/
3 3 3 / 1 \ / 1 \ / 1 \ / 1 \ / 1 \ |1 - --| 3*|1 - --| 3*|1 - --| 3*|1 - --| 3*|1 - --| | 2| | 2| | 2| | 2| | 2| 3 \ x / \ x / \ x / \ x / \ x / - -- + --------- - ---------- + --------------------- + ---------------------- - ----------------------- 4 2 3 / 1\ 2 2 3 / 1\ / 1\ x / 1\ x *|x + -| / 1\ / 1\ / 1\ 2/ 1\ 2*x *|x + -|*log|x + -| |x + -| \ x/ 4*|x + -| *log|x + -| 8*|x + -| *log |x + -| \ x/ \ x/ \ x/ \ x/ \ x/ \ x/ \ x/ -------------------------------------------------------------------------------------------------------- ____________ / 1\ / / 1\ |x + -|* / log|x + -| \ x/ \/ \ x/