Mister Exam

Other calculators


sqrt(log(7x^3-3x))

Derivative of sqrt(log(7x^3-3x))

Function f() - derivative -N order at the point
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
   _________________
  /    /   3      \ 
\/  log\7*x  - 3*x/ 
$$\sqrt{\log{\left(7 x^{3} - 3 x \right)}}$$
  /   _________________\
d |  /    /   3      \ |
--\\/  log\7*x  - 3*x/ /
dx                      
$$\frac{d}{d x} \sqrt{\log{\left(7 x^{3} - 3 x \right)}}$$
Detail solution
  1. Let .

  2. Apply the power rule: goes to

  3. Then, apply the chain rule. Multiply by :

    1. Let .

    2. The derivative of is .

    3. Then, apply the chain rule. Multiply by :

      1. Differentiate term by term:

        1. The derivative of a constant times a function is the constant times the derivative of the function.

          1. Apply the power rule: goes to

          So, the result is:

        2. The derivative of a constant times a function is the constant times the derivative of the function.

          1. The derivative of a constant times a function is the constant times the derivative of the function.

            1. Apply the power rule: goes to

            So, the result is:

          So, the result is:

        The result is:

      The result of the chain rule is:

    The result of the chain rule is:

  4. Now simplify:


The answer is:

The graph
The first derivative [src]
                      2            
             -3 + 21*x             
-----------------------------------
                  _________________
  /   3      \   /    /   3      \ 
2*\7*x  - 3*x/*\/  log\7*x  - 3*x/ 
$$\frac{21 x^{2} - 3}{2 \cdot \left(7 x^{3} - 3 x\right) \sqrt{\log{\left(7 x^{3} - 3 x \right)}}}$$
The second derivative [src]
  /                  2                            2          \
  |       /        2\                  /        2\           |
  |     3*\-1 + 7*x /                3*\-1 + 7*x /           |
3*|7 - ---------------- - -----------------------------------|
  |       2 /        2\      2 /        2\    /  /        2\\|
  \    2*x *\-3 + 7*x /   4*x *\-3 + 7*x /*log\x*\-3 + 7*x ///
--------------------------------------------------------------
                            ____________________              
             /        2\   /    /  /        2\\               
             \-3 + 7*x /*\/  log\x*\-3 + 7*x //               
$$\frac{3 \cdot \left(7 - \frac{3 \left(7 x^{2} - 1\right)^{2}}{2 x^{2} \cdot \left(7 x^{2} - 3\right)} - \frac{3 \left(7 x^{2} - 1\right)^{2}}{4 x^{2} \cdot \left(7 x^{2} - 3\right) \log{\left(x \left(7 x^{2} - 3\right) \right)}}\right)}{\left(7 x^{2} - 3\right) \sqrt{\log{\left(x \left(7 x^{2} - 3\right) \right)}}}$$
The third derivative [src]
  /                                   3                                                              3                                       3           \
  |       /        2\      /        2\                /        2\                         /        2\                             /        2\            |
  |    63*\-1 + 7*x /    9*\-1 + 7*x /             63*\-1 + 7*x /                      27*\-1 + 7*x /                          27*\-1 + 7*x /            |
3*|7 - -------------- + --------------- - -------------------------------- + ------------------------------------ + -------------------------------------|
  |              2                    2     /        2\    /  /        2\\                   2                                      2                    |
  |      -3 + 7*x        2 /        2\    2*\-3 + 7*x /*log\x*\-3 + 7*x //      2 /        2\     /  /        2\\      2 /        2\     2/  /        2\\|
  \                     x *\-3 + 7*x /                                       4*x *\-3 + 7*x / *log\x*\-3 + 7*x //   8*x *\-3 + 7*x / *log \x*\-3 + 7*x ///
----------------------------------------------------------------------------------------------------------------------------------------------------------
                                                                           ____________________                                                           
                                                            /        2\   /    /  /        2\\                                                            
                                                          x*\-3 + 7*x /*\/  log\x*\-3 + 7*x //                                                            
$$\frac{3 \cdot \left(7 - \frac{63 \cdot \left(7 x^{2} - 1\right)}{7 x^{2} - 3} - \frac{63 \cdot \left(7 x^{2} - 1\right)}{2 \cdot \left(7 x^{2} - 3\right) \log{\left(x \left(7 x^{2} - 3\right) \right)}} + \frac{9 \left(7 x^{2} - 1\right)^{3}}{x^{2} \left(7 x^{2} - 3\right)^{2}} + \frac{27 \left(7 x^{2} - 1\right)^{3}}{4 x^{2} \left(7 x^{2} - 3\right)^{2} \log{\left(x \left(7 x^{2} - 3\right) \right)}} + \frac{27 \left(7 x^{2} - 1\right)^{3}}{8 x^{2} \left(7 x^{2} - 3\right)^{2} \log{\left(x \left(7 x^{2} - 3\right) \right)}^{2}}\right)}{x \left(7 x^{2} - 3\right) \sqrt{\log{\left(x \left(7 x^{2} - 3\right) \right)}}}$$
The graph
Derivative of sqrt(log(7x^3-3x))