Mister Exam

Other calculators


-2xe^(-x^2)

Derivative of -2xe^(-x^2)

Function f() - derivative -N order at the point
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
        2
      -x 
-2*x*e   
$$- 2 x e^{- x^{2}}$$
  /        2\
d |      -x |
--\-2*x*e   /
dx           
$$\frac{d}{d x} \left(- 2 x e^{- x^{2}}\right)$$
Detail solution
  1. The derivative of a constant times a function is the constant times the derivative of the function.

    1. Apply the quotient rule, which is:

      and .

      To find :

      1. Apply the power rule: goes to

      To find :

      1. Let .

      2. The derivative of is itself.

      3. Then, apply the chain rule. Multiply by :

        1. Apply the power rule: goes to

        The result of the chain rule is:

      Now plug in to the quotient rule:

    So, the result is:

  2. Now simplify:


The answer is:

The graph
The first derivative [src]
       2           2
     -x       2  -x 
- 2*e    + 4*x *e   
$$4 x^{2} e^{- x^{2}} - 2 e^{- x^{2}}$$
The second derivative [src]
                  2
    /       2\  -x 
4*x*\3 - 2*x /*e   
$$4 x \left(- 2 x^{2} + 3\right) e^{- x^{2}}$$
The third derivative [src]
                                   2
  /       2      2 /        2\\  -x 
4*\3 - 6*x  + 2*x *\-3 + 2*x //*e   
$$4 \cdot \left(2 x^{2} \cdot \left(2 x^{2} - 3\right) - 6 x^{2} + 3\right) e^{- x^{2}}$$
The graph
Derivative of -2xe^(-x^2)