Mister Exam

Other calculators


-2xe^(-x^2)

Derivative of -2xe^(-x^2)

Function f() - derivative -N order at the point
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
        2
      -x 
-2*x*e   
2xex2- 2 x e^{- x^{2}}
  /        2\
d |      -x |
--\-2*x*e   /
dx           
ddx(2xex2)\frac{d}{d x} \left(- 2 x e^{- x^{2}}\right)
Detail solution
  1. The derivative of a constant times a function is the constant times the derivative of the function.

    1. Apply the quotient rule, which is:

      ddxf(x)g(x)=f(x)ddxg(x)+g(x)ddxf(x)g2(x)\frac{d}{d x} \frac{f{\left(x \right)}}{g{\left(x \right)}} = \frac{- f{\left(x \right)} \frac{d}{d x} g{\left(x \right)} + g{\left(x \right)} \frac{d}{d x} f{\left(x \right)}}{g^{2}{\left(x \right)}}

      f(x)=xf{\left(x \right)} = x and g(x)=ex2g{\left(x \right)} = e^{x^{2}}.

      To find ddxf(x)\frac{d}{d x} f{\left(x \right)}:

      1. Apply the power rule: xx goes to 11

      To find ddxg(x)\frac{d}{d x} g{\left(x \right)}:

      1. Let u=x2u = x^{2}.

      2. The derivative of eue^{u} is itself.

      3. Then, apply the chain rule. Multiply by ddxx2\frac{d}{d x} x^{2}:

        1. Apply the power rule: x2x^{2} goes to 2x2 x

        The result of the chain rule is:

        2xex22 x e^{x^{2}}

      Now plug in to the quotient rule:

      (2x2ex2+ex2)e2x2\left(- 2 x^{2} e^{x^{2}} + e^{x^{2}}\right) e^{- 2 x^{2}}

    So, the result is: 2(2x2ex2+ex2)e2x2- 2 \left(- 2 x^{2} e^{x^{2}} + e^{x^{2}}\right) e^{- 2 x^{2}}

  2. Now simplify:

    2(2x21)ex22 \cdot \left(2 x^{2} - 1\right) e^{- x^{2}}


The answer is:

2(2x21)ex22 \cdot \left(2 x^{2} - 1\right) e^{- x^{2}}

The graph
02468-8-6-4-2-10105-5
The first derivative [src]
       2           2
     -x       2  -x 
- 2*e    + 4*x *e   
4x2ex22ex24 x^{2} e^{- x^{2}} - 2 e^{- x^{2}}
The second derivative [src]
                  2
    /       2\  -x 
4*x*\3 - 2*x /*e   
4x(2x2+3)ex24 x \left(- 2 x^{2} + 3\right) e^{- x^{2}}
The third derivative [src]
                                   2
  /       2      2 /        2\\  -x 
4*\3 - 6*x  + 2*x *\-3 + 2*x //*e   
4(2x2(2x23)6x2+3)ex24 \cdot \left(2 x^{2} \cdot \left(2 x^{2} - 3\right) - 6 x^{2} + 3\right) e^{- x^{2}}
The graph
Derivative of -2xe^(-x^2)