Mister Exam

Derivative of arctanh(x)

Function f() - derivative -N order at the point
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
atanh(x)
$$\operatorname{atanh}{\left(x \right)}$$
atanh(x)
The graph
The first derivative [src]
  1   
------
     2
1 - x 
$$\frac{1}{1 - x^{2}}$$
The second derivative [src]
   2*x    
----------
         2
/      2\ 
\-1 + x / 
$$\frac{2 x}{\left(x^{2} - 1\right)^{2}}$$
The third derivative [src]
  /         2 \
  |      4*x  |
2*|1 - -------|
  |          2|
  \    -1 + x /
---------------
            2  
   /      2\   
   \-1 + x /   
$$\frac{2 \left(- \frac{4 x^{2}}{x^{2} - 1} + 1\right)}{\left(x^{2} - 1\right)^{2}}$$
The graph
Derivative of arctanh(x)