Mister Exam

Derivative of sqrt((ln(5x)))

Function f() - derivative -N order at the point
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
  __________
\/ log(5*x) 
$$\sqrt{\log{\left(5 x \right)}}$$
sqrt(log(5*x))
Detail solution
  1. Let .

  2. Apply the power rule: goes to

  3. Then, apply the chain rule. Multiply by :

    1. Let .

    2. The derivative of is .

    3. Then, apply the chain rule. Multiply by :

      1. The derivative of a constant times a function is the constant times the derivative of the function.

        1. Apply the power rule: goes to

        So, the result is:

      The result of the chain rule is:

    The result of the chain rule is:


The answer is:

The graph
The first derivative [src]
       1        
----------------
      __________
2*x*\/ log(5*x) 
$$\frac{1}{2 x \sqrt{\log{\left(5 x \right)}}}$$
The second derivative [src]
  /       1    \ 
 -|2 + --------| 
  \    log(5*x)/ 
-----------------
   2   __________
4*x *\/ log(5*x) 
$$- \frac{2 + \frac{1}{\log{\left(5 x \right)}}}{4 x^{2} \sqrt{\log{\left(5 x \right)}}}$$
The third derivative [src]
        3             3     
1 + ---------- + -----------
    4*log(5*x)        2     
                 8*log (5*x)
----------------------------
       3   __________       
      x *\/ log(5*x)        
$$\frac{1 + \frac{3}{4 \log{\left(5 x \right)}} + \frac{3}{8 \log{\left(5 x \right)}^{2}}}{x^{3} \sqrt{\log{\left(5 x \right)}}}$$