______________ x*\/ log(5*x - 8)
x*sqrt(log(5*x - 8))
Apply the product rule:
; to find :
Apply the power rule: goes to
; to find :
Let .
Apply the power rule: goes to
Then, apply the chain rule. Multiply by :
Let .
The derivative of is .
Then, apply the chain rule. Multiply by :
Differentiate term by term:
The derivative of a constant times a function is the constant times the derivative of the function.
Apply the power rule: goes to
So, the result is:
The derivative of the constant is zero.
The result is:
The result of the chain rule is:
The result of the chain rule is:
The result is:
Now simplify:
The answer is:
______________ 5*x \/ log(5*x - 8) + ---------------------------- ______________ 2*(5*x - 8)*\/ log(5*x - 8)
/ / 1 \\ | 5*x*|2 + -------------|| | \ log(-8 + 5*x)/| 5*|1 - -----------------------| \ 4*(-8 + 5*x) / ------------------------------- _______________ (-8 + 5*x)*\/ log(-8 + 5*x)
/ / 3 6 \\ | 5*x*|8 + -------------- + -------------|| | | 2 log(-8 + 5*x)|| | 6 \ log (-8 + 5*x) /| 25*|-12 - ------------- + ----------------------------------------| \ log(-8 + 5*x) -8 + 5*x / ------------------------------------------------------------------- 2 _______________ 8*(-8 + 5*x) *\/ log(-8 + 5*x)