Mister Exam

Other calculators


y=x*sqrt(ln(5x-8))

Derivative of y=x*sqrt(ln(5x-8))

Function f() - derivative -N order at the point
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
    ______________
x*\/ log(5*x - 8) 
$$x \sqrt{\log{\left(5 x - 8 \right)}}$$
x*sqrt(log(5*x - 8))
Detail solution
  1. Apply the product rule:

    ; to find :

    1. Apply the power rule: goes to

    ; to find :

    1. Let .

    2. Apply the power rule: goes to

    3. Then, apply the chain rule. Multiply by :

      1. Let .

      2. The derivative of is .

      3. Then, apply the chain rule. Multiply by :

        1. Differentiate term by term:

          1. The derivative of a constant times a function is the constant times the derivative of the function.

            1. Apply the power rule: goes to

            So, the result is:

          2. The derivative of the constant is zero.

          The result is:

        The result of the chain rule is:

      The result of the chain rule is:

    The result is:

  2. Now simplify:


The answer is:

The graph
The first derivative [src]
  ______________               5*x             
\/ log(5*x - 8)  + ----------------------------
                                 ______________
                   2*(5*x - 8)*\/ log(5*x - 8) 
$$\frac{5 x}{2 \left(5 x - 8\right) \sqrt{\log{\left(5 x - 8 \right)}}} + \sqrt{\log{\left(5 x - 8 \right)}}$$
The second derivative [src]
  /        /          1      \\
  |    5*x*|2 + -------------||
  |        \    log(-8 + 5*x)/|
5*|1 - -----------------------|
  \          4*(-8 + 5*x)     /
-------------------------------
               _______________ 
  (-8 + 5*x)*\/ log(-8 + 5*x)  
$$\frac{5 \left(- \frac{5 x \left(2 + \frac{1}{\log{\left(5 x - 8 \right)}}\right)}{4 \left(5 x - 8\right)} + 1\right)}{\left(5 x - 8\right) \sqrt{\log{\left(5 x - 8 \right)}}}$$
The third derivative [src]
   /                          /          3                6      \\
   |                      5*x*|8 + -------------- + -------------||
   |                          |       2             log(-8 + 5*x)||
   |            6             \    log (-8 + 5*x)                /|
25*|-12 - ------------- + ----------------------------------------|
   \      log(-8 + 5*x)                   -8 + 5*x                /
-------------------------------------------------------------------
                              2   _______________                  
                  8*(-8 + 5*x) *\/ log(-8 + 5*x)                   
$$\frac{25 \left(\frac{5 x \left(8 + \frac{6}{\log{\left(5 x - 8 \right)}} + \frac{3}{\log{\left(5 x - 8 \right)}^{2}}\right)}{5 x - 8} - 12 - \frac{6}{\log{\left(5 x - 8 \right)}}\right)}{8 \left(5 x - 8\right)^{2} \sqrt{\log{\left(5 x - 8 \right)}}}$$
The graph
Derivative of y=x*sqrt(ln(5x-8))