______________ x*\/ log(5*x - 8)
x*sqrt(log(5*x - 8))
Apply the product rule:
; to find :
Apply the power rule: goes to
; to find :
Let .
Apply the power rule: goes to
Then, apply the chain rule. Multiply by :
Let .
The derivative of is .
Then, apply the chain rule. Multiply by :
Differentiate term by term:
The derivative of a constant times a function is the constant times the derivative of the function.
Apply the power rule: goes to
So, the result is:
The derivative of the constant is zero.
The result is:
The result of the chain rule is:
The result of the chain rule is:
The result is:
Now simplify:
The answer is:
______________ 5*x
\/ log(5*x - 8) + ----------------------------
______________
2*(5*x - 8)*\/ log(5*x - 8)
/ / 1 \\
| 5*x*|2 + -------------||
| \ log(-8 + 5*x)/|
5*|1 - -----------------------|
\ 4*(-8 + 5*x) /
-------------------------------
_______________
(-8 + 5*x)*\/ log(-8 + 5*x)
/ / 3 6 \\
| 5*x*|8 + -------------- + -------------||
| | 2 log(-8 + 5*x)||
| 6 \ log (-8 + 5*x) /|
25*|-12 - ------------- + ----------------------------------------|
\ log(-8 + 5*x) -8 + 5*x /
-------------------------------------------------------------------
2 _______________
8*(-8 + 5*x) *\/ log(-8 + 5*x)