Mister Exam

Other calculators


y=sqrt(arctgx/3)

Derivative of y=sqrt(arctgx/3)

Function f() - derivative -N order at the point
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
    _________
   / acot(x) 
  /  ------- 
\/      3    
$$\sqrt{\frac{\operatorname{acot}{\left(x \right)}}{3}}$$
sqrt(acot(x)/3)
The graph
The first derivative [src]
    ___   _________ 
  \/ 3 *\/ acot(x)  
- ----------------- 
          3         
--------------------
   /     2\         
 2*\1 + x /*acot(x) 
$$- \frac{\frac{1}{3} \sqrt{3} \sqrt{\operatorname{acot}{\left(x \right)}}}{2 \left(x^{2} + 1\right) \operatorname{acot}{\left(x \right)}}$$
The second derivative [src]
  ___ /     1         \ 
\/ 3 *|- ------- + 4*x| 
      \  acot(x)      / 
------------------------
           2            
   /     2\    _________
12*\1 + x / *\/ acot(x) 
$$\frac{\sqrt{3} \left(4 x - \frac{1}{\operatorname{acot}{\left(x \right)}}\right)}{12 \left(x^{2} + 1\right)^{2} \sqrt{\operatorname{acot}{\left(x \right)}}}$$
The third derivative [src]
      /        2                                        \
  ___ |    32*x             3                 12*x      |
\/ 3 *|8 - ------ - ----------------- + ----------------|
      |         2   /     2\     2      /     2\        |
      \    1 + x    \1 + x /*acot (x)   \1 + x /*acot(x)/
---------------------------------------------------------
                            2                            
                    /     2\    _________                
                 24*\1 + x / *\/ acot(x)                 
$$\frac{\sqrt{3} \left(- \frac{32 x^{2}}{x^{2} + 1} + \frac{12 x}{\left(x^{2} + 1\right) \operatorname{acot}{\left(x \right)}} + 8 - \frac{3}{\left(x^{2} + 1\right) \operatorname{acot}^{2}{\left(x \right)}}\right)}{24 \left(x^{2} + 1\right)^{2} \sqrt{\operatorname{acot}{\left(x \right)}}}$$
The graph
Derivative of y=sqrt(arctgx/3)