Detail solution
-
Don't know the steps in finding this derivative.
But the derivative is
The answer is:
The first derivative
[src]
sin(x)
sin (x)*(cos(x)*log(sin(x)) + cos(x))
$$\left(\log{\left(\sin{\left(x \right)} \right)} \cos{\left(x \right)} + \cos{\left(x \right)}\right) \sin^{\sin{\left(x \right)}}{\left(x \right)}$$
The second derivative
[src]
/ 2 \
sin(x) | 2 2 cos (x) |
sin (x)*|-sin(x) + (1 + log(sin(x))) *cos (x) + ------- - log(sin(x))*sin(x)|
\ sin(x) /
$$\left(\left(\log{\left(\sin{\left(x \right)} \right)} + 1\right)^{2} \cos^{2}{\left(x \right)} - \log{\left(\sin{\left(x \right)} \right)} \sin{\left(x \right)} - \sin{\left(x \right)} + \frac{\cos^{2}{\left(x \right)}}{\sin{\left(x \right)}}\right) \sin^{\sin{\left(x \right)}}{\left(x \right)}$$
The third derivative
[src]
/ 2 / 2 \\
sin(x) | 3 2 cos (x) | cos (x) ||
sin (x)*|-4 - log(sin(x)) + (1 + log(sin(x))) *cos (x) - ------- - 3*(1 + log(sin(x)))*|log(sin(x))*sin(x) - ------- + sin(x)||*cos(x)
| 2 \ sin(x) /|
\ sin (x) /
$$\left(\left(\log{\left(\sin{\left(x \right)} \right)} + 1\right)^{3} \cos^{2}{\left(x \right)} - 3 \left(\log{\left(\sin{\left(x \right)} \right)} + 1\right) \left(\log{\left(\sin{\left(x \right)} \right)} \sin{\left(x \right)} + \sin{\left(x \right)} - \frac{\cos^{2}{\left(x \right)}}{\sin{\left(x \right)}}\right) - \log{\left(\sin{\left(x \right)} \right)} - 4 - \frac{\cos^{2}{\left(x \right)}}{\sin^{2}{\left(x \right)}}\right) \sin^{\sin{\left(x \right)}}{\left(x \right)} \cos{\left(x \right)}$$