Detail solution
-
Let .
-
Apply the power rule: goes to
-
Then, apply the chain rule. Multiply by :
-
The derivative of sine is cosine:
The result of the chain rule is:
The answer is:
The first derivative
[src]
$$56 \sin^{55}{\left(x \right)} \cos{\left(x \right)}$$
The second derivative
[src]
54 / 2 2 \
56*sin (x)*\- sin (x) + 55*cos (x)/
$$56 \left(- \sin^{2}{\left(x \right)} + 55 \cos^{2}{\left(x \right)}\right) \sin^{54}{\left(x \right)}$$
The third derivative
[src]
53 / 2 2 \
112*sin (x)*\- 83*sin (x) + 1485*cos (x)/*cos(x)
$$112 \left(- 83 \sin^{2}{\left(x \right)} + 1485 \cos^{2}{\left(x \right)}\right) \sin^{53}{\left(x \right)} \cos{\left(x \right)}$$