2*x*log(x)
d --(2*x*log(x)) dx
The derivative of a constant times a function is the constant times the derivative of the function.
Apply the product rule:
f(x)=xf{\left(x \right)} = xf(x)=x; to find ddxf(x)\frac{d}{d x} f{\left(x \right)}dxdf(x):
Apply the power rule: xxx goes to 111
g(x)=log(x)g{\left(x \right)} = \log{\left(x \right)}g(x)=log(x); to find ddxg(x)\frac{d}{d x} g{\left(x \right)}dxdg(x):
The derivative of log(x)\log{\left(x \right)}log(x) is 1x\frac{1}{x}x1.
The result is: log(x)+1\log{\left(x \right)} + 1log(x)+1
So, the result is: 2log(x)+22 \log{\left(x \right)} + 22log(x)+2
The answer is:
2 + 2*log(x)
2 - x
-2 --- 2 x