sin(x) ---------- 1 + tan(x)
d / sin(x) \ --|----------| dx\1 + tan(x)/
Apply the quotient rule, which is:
and .
To find :
The derivative of sine is cosine:
To find :
Differentiate term by term:
The derivative of the constant is zero.
Rewrite the function to be differentiated:
Apply the quotient rule, which is:
and .
To find :
The derivative of sine is cosine:
To find :
The derivative of cosine is negative sine:
Now plug in to the quotient rule:
The result is:
Now plug in to the quotient rule:
Now simplify:
The answer is:
/ 2 \
cos(x) \-1 - tan (x)/*sin(x)
---------- + ---------------------
1 + tan(x) 2
(1 + tan(x))
/ / 2 \ \
| / 2 \ | 1 + tan (x) | |
| / 2 \ 2*\1 + tan (x)/*|- ----------- + tan(x)|*sin(x) |
|2*\1 + tan (x)/*cos(x) \ 1 + tan(x) / |
-|---------------------- + ----------------------------------------------- + sin(x)|
\ 1 + tan(x) 1 + tan(x) /
-------------------------------------------------------------------------------------
1 + tan(x)
/ 2 \
| / 2 \ / 2 \ |
/ 2 \ / 2 \ | 2 3*\1 + tan (x)/ 6*\1 + tan (x)/*tan(x)|
/ 2 \ | 1 + tan (x) | 2*\1 + tan (x)/*|1 + 3*tan (x) + ---------------- - ----------------------|*sin(x)
/ 2 \ 6*\1 + tan (x)/*|- ----------- + tan(x)|*cos(x) | 2 1 + tan(x) |
3*\1 + tan (x)/*sin(x) \ 1 + tan(x) / \ (1 + tan(x)) /
-cos(x) + ---------------------- - ----------------------------------------------- - ----------------------------------------------------------------------------------
1 + tan(x) 1 + tan(x) 1 + tan(x)
-----------------------------------------------------------------------------------------------------------------------------------------------------------------------
1 + tan(x)