sin(x) ---------- 1 + tan(x)
d / sin(x) \ --|----------| dx\1 + tan(x)/
Apply the quotient rule, which is:
and .
To find :
The derivative of sine is cosine:
To find :
Differentiate term by term:
The derivative of the constant is zero.
Rewrite the function to be differentiated:
Apply the quotient rule, which is:
and .
To find :
The derivative of sine is cosine:
To find :
The derivative of cosine is negative sine:
Now plug in to the quotient rule:
The result is:
Now plug in to the quotient rule:
Now simplify:
The answer is:
/ 2 \ cos(x) \-1 - tan (x)/*sin(x) ---------- + --------------------- 1 + tan(x) 2 (1 + tan(x))
/ / 2 \ \ | / 2 \ | 1 + tan (x) | | | / 2 \ 2*\1 + tan (x)/*|- ----------- + tan(x)|*sin(x) | |2*\1 + tan (x)/*cos(x) \ 1 + tan(x) / | -|---------------------- + ----------------------------------------------- + sin(x)| \ 1 + tan(x) 1 + tan(x) / ------------------------------------------------------------------------------------- 1 + tan(x)
/ 2 \ | / 2 \ / 2 \ | / 2 \ / 2 \ | 2 3*\1 + tan (x)/ 6*\1 + tan (x)/*tan(x)| / 2 \ | 1 + tan (x) | 2*\1 + tan (x)/*|1 + 3*tan (x) + ---------------- - ----------------------|*sin(x) / 2 \ 6*\1 + tan (x)/*|- ----------- + tan(x)|*cos(x) | 2 1 + tan(x) | 3*\1 + tan (x)/*sin(x) \ 1 + tan(x) / \ (1 + tan(x)) / -cos(x) + ---------------------- - ----------------------------------------------- - ---------------------------------------------------------------------------------- 1 + tan(x) 1 + tan(x) 1 + tan(x) ----------------------------------------------------------------------------------------------------------------------------------------------------------------------- 1 + tan(x)