Mister Exam

Other calculators


(x+4)^2*(x+1)+9

Derivative of (x+4)^2*(x+1)+9

Function f() - derivative -N order at the point
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
       2            
(x + 4) *(x + 1) + 9
(x+1)(x+4)2+9\left(x + 1\right) \left(x + 4\right)^{2} + 9
(x + 4)^2*(x + 1) + 9
Detail solution
  1. Differentiate (x+1)(x+4)2+9\left(x + 1\right) \left(x + 4\right)^{2} + 9 term by term:

    1. Apply the product rule:

      ddxf(x)g(x)=f(x)ddxg(x)+g(x)ddxf(x)\frac{d}{d x} f{\left(x \right)} g{\left(x \right)} = f{\left(x \right)} \frac{d}{d x} g{\left(x \right)} + g{\left(x \right)} \frac{d}{d x} f{\left(x \right)}

      f(x)=(x+4)2f{\left(x \right)} = \left(x + 4\right)^{2}; to find ddxf(x)\frac{d}{d x} f{\left(x \right)}:

      1. Let u=x+4u = x + 4.

      2. Apply the power rule: u2u^{2} goes to 2u2 u

      3. Then, apply the chain rule. Multiply by ddx(x+4)\frac{d}{d x} \left(x + 4\right):

        1. Differentiate x+4x + 4 term by term:

          1. Apply the power rule: xx goes to 11

          2. The derivative of the constant 44 is zero.

          The result is: 11

        The result of the chain rule is:

        2x+82 x + 8

      g(x)=x+1g{\left(x \right)} = x + 1; to find ddxg(x)\frac{d}{d x} g{\left(x \right)}:

      1. Differentiate x+1x + 1 term by term:

        1. Apply the power rule: xx goes to 11

        2. The derivative of the constant 11 is zero.

        The result is: 11

      The result is: (x+1)(2x+8)+(x+4)2\left(x + 1\right) \left(2 x + 8\right) + \left(x + 4\right)^{2}

    2. The derivative of the constant 99 is zero.

    The result is: (x+1)(2x+8)+(x+4)2\left(x + 1\right) \left(2 x + 8\right) + \left(x + 4\right)^{2}

  2. Now simplify:

    3(x+2)(x+4)3 \left(x + 2\right) \left(x + 4\right)


The answer is:

3(x+2)(x+4)3 \left(x + 2\right) \left(x + 4\right)

The graph
02468-8-6-4-2-1010-25002500
The first derivative [src]
       2                    
(x + 4)  + (8 + 2*x)*(x + 1)
(x+1)(2x+8)+(x+4)2\left(x + 1\right) \left(2 x + 8\right) + \left(x + 4\right)^{2}
The second derivative [src]
6*(3 + x)
6(x+3)6 \left(x + 3\right)
The third derivative [src]
6
66
The graph
Derivative of (x+4)^2*(x+1)+9