cos(2*x) sin (2*x)
sin(2*x)^cos(2*x)
Don't know the steps in finding this derivative.
But the derivative is
The answer is:
/ 2 \
cos(2*x) | 2*cos (2*x)|
sin (2*x)*|-2*log(sin(2*x))*sin(2*x) + -----------|
\ sin(2*x) /
/ 2 \
|/ 2 \ / 2 \ |
cos(2*x) || cos (2*x)| | cos (2*x) | |
4*sin (2*x)*||log(sin(2*x))*sin(2*x) - ---------| - |3 + --------- + log(sin(2*x))|*cos(2*x)|
|\ sin(2*x)/ | 2 | |
\ \ sin (2*x) / /
/ 3 \
| / 2 \ 2 4 / 2 \ / 2 \ |
cos(2*x) | | cos (2*x)| 2*cos (2*x) 2*cos (2*x) | cos (2*x)| | cos (2*x) | |
8*sin (2*x)*|- |log(sin(2*x))*sin(2*x) - ---------| + 3*sin(2*x) + log(sin(2*x))*sin(2*x) + ----------- + ----------- + 3*|log(sin(2*x))*sin(2*x) - ---------|*|3 + --------- + log(sin(2*x))|*cos(2*x)|
| \ sin(2*x)/ sin(2*x) 3 \ sin(2*x)/ | 2 | |
\ sin (2*x) \ sin (2*x) / /