Mister Exam

Other calculators


(1+sin(2x))*cos(2x)

Derivative of (1+sin(2x))*cos(2x)

Function f() - derivative -N order at the point
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
(1 + sin(2*x))*cos(2*x)
(sin(2x)+1)cos(2x)\left(\sin{\left(2 x \right)} + 1\right) \cos{\left(2 x \right)}
d                          
--((1 + sin(2*x))*cos(2*x))
dx                         
ddx(sin(2x)+1)cos(2x)\frac{d}{d x} \left(\sin{\left(2 x \right)} + 1\right) \cos{\left(2 x \right)}
Detail solution
  1. Apply the product rule:

    ddxf(x)g(x)=f(x)ddxg(x)+g(x)ddxf(x)\frac{d}{d x} f{\left(x \right)} g{\left(x \right)} = f{\left(x \right)} \frac{d}{d x} g{\left(x \right)} + g{\left(x \right)} \frac{d}{d x} f{\left(x \right)}

    f(x)=sin(2x)+1f{\left(x \right)} = \sin{\left(2 x \right)} + 1; to find ddxf(x)\frac{d}{d x} f{\left(x \right)}:

    1. Differentiate sin(2x)+1\sin{\left(2 x \right)} + 1 term by term:

      1. The derivative of the constant 11 is zero.

      2. Let u=2xu = 2 x.

      3. The derivative of sine is cosine:

        ddusin(u)=cos(u)\frac{d}{d u} \sin{\left(u \right)} = \cos{\left(u \right)}

      4. Then, apply the chain rule. Multiply by ddx2x\frac{d}{d x} 2 x:

        1. The derivative of a constant times a function is the constant times the derivative of the function.

          1. Apply the power rule: xx goes to 11

          So, the result is: 22

        The result of the chain rule is:

        2cos(2x)2 \cos{\left(2 x \right)}

      The result is: 2cos(2x)2 \cos{\left(2 x \right)}

    g(x)=cos(2x)g{\left(x \right)} = \cos{\left(2 x \right)}; to find ddxg(x)\frac{d}{d x} g{\left(x \right)}:

    1. Let u=2xu = 2 x.

    2. The derivative of cosine is negative sine:

      dducos(u)=sin(u)\frac{d}{d u} \cos{\left(u \right)} = - \sin{\left(u \right)}

    3. Then, apply the chain rule. Multiply by ddx2x\frac{d}{d x} 2 x:

      1. The derivative of a constant times a function is the constant times the derivative of the function.

        1. Apply the power rule: xx goes to 11

        So, the result is: 22

      The result of the chain rule is:

      2sin(2x)- 2 \sin{\left(2 x \right)}

    The result is: 2(sin(2x)+1)sin(2x)+2cos2(2x)- 2 \left(\sin{\left(2 x \right)} + 1\right) \sin{\left(2 x \right)} + 2 \cos^{2}{\left(2 x \right)}


The answer is:

2(sin(2x)+1)sin(2x)+2cos2(2x)- 2 \left(\sin{\left(2 x \right)} + 1\right) \sin{\left(2 x \right)} + 2 \cos^{2}{\left(2 x \right)}

The graph
02468-8-6-4-2-10105-5
The first derivative [src]
     2                                 
2*cos (2*x) - 2*(1 + sin(2*x))*sin(2*x)
2(sin(2x)+1)sin(2x)+2cos2(2x)- 2 \left(\sin{\left(2 x \right)} + 1\right) \sin{\left(2 x \right)} + 2 \cos^{2}{\left(2 x \right)}
The second derivative [src]
-4*(1 + 4*sin(2*x))*cos(2*x)
4(4sin(2x)+1)cos(2x)- 4 \cdot \left(4 \sin{\left(2 x \right)} + 1\right) \cos{\left(2 x \right)}
The third derivative [src]
  /       2             2                               \
8*\- 4*cos (2*x) + 3*sin (2*x) + (1 + sin(2*x))*sin(2*x)/
8((sin(2x)+1)sin(2x)+3sin2(2x)4cos2(2x))8 \left(\left(\sin{\left(2 x \right)} + 1\right) \sin{\left(2 x \right)} + 3 \sin^{2}{\left(2 x \right)} - 4 \cos^{2}{\left(2 x \right)}\right)
The graph
Derivative of (1+sin(2x))*cos(2x)