Detail solution
-
Let .
-
Apply the power rule: goes to
-
Then, apply the chain rule. Multiply by :
-
The derivative of sine is cosine:
The result of the chain rule is:
-
Now simplify:
The answer is:
The first derivative
[src]
n
n*sin (x)*cos(x)
----------------
sin(x)
$$\frac{n \sin^{n}{\left(x \right)} \cos{\left(x \right)}}{\sin{\left(x \right)}}$$
The second derivative
[src]
/ 2 2 \
n | cos (x) n*cos (x)|
n*sin (x)*|-1 - ------- + ---------|
| 2 2 |
\ sin (x) sin (x) /
$$n \left(\frac{n \cos^{2}{\left(x \right)}}{\sin^{2}{\left(x \right)}} - 1 - \frac{\cos^{2}{\left(x \right)}}{\sin^{2}{\left(x \right)}}\right) \sin^{n}{\left(x \right)}$$
The third derivative
[src]
/ 2 2 2 2 \
n | 2*cos (x) n *cos (x) 3*n*cos (x)|
n*sin (x)*|2 - 3*n + --------- + ---------- - -----------|*cos(x)
| 2 2 2 |
\ sin (x) sin (x) sin (x) /
-----------------------------------------------------------------
sin(x)
$$\frac{n \left(\frac{n^{2} \cos^{2}{\left(x \right)}}{\sin^{2}{\left(x \right)}} - 3 n - \frac{3 n \cos^{2}{\left(x \right)}}{\sin^{2}{\left(x \right)}} + 2 + \frac{2 \cos^{2}{\left(x \right)}}{\sin^{2}{\left(x \right)}}\right) \sin^{n}{\left(x \right)} \cos{\left(x \right)}}{\sin{\left(x \right)}}$$