1 --------------- / 3\ sin\3*x - 4*x /
1/sin(3*x - 4*x^3)
Let .
Apply the power rule: goes to
Then, apply the chain rule. Multiply by :
Let .
The derivative of sine is cosine:
Then, apply the chain rule. Multiply by :
Differentiate term by term:
The derivative of a constant times a function is the constant times the derivative of the function.
Apply the power rule: goes to
So, the result is:
The derivative of a constant times a function is the constant times the derivative of the function.
Apply the power rule: goes to
So, the result is:
The result is:
The result of the chain rule is:
The result of the chain rule is:
Now simplify:
The answer is:
/ 2\ / 3\
-\3 - 12*x /*cos\-3*x + 4*x /
------------------------------
2/ 3\
sin \3*x - 4*x /
/ 2 \
| 2 / 2\ 2/ / 2\\ / / 2\\|
| / 2\ 6*\-1 + 4*x / *cos \x*\-3 + 4*x // 8*x*cos\x*\-3 + 4*x //|
3*|- 3*\-1 + 4*x / - ---------------------------------- + ----------------------|
| 2/ / 2\\ / / 2\\ |
\ sin \x*\-3 + 4*x // sin\x*\-3 + 4*x // /
----------------------------------------------------------------------------------
/ / 2\\
sin\x*\-3 + 4*x //
/ 3 3 \
| / / 2\\ / 2\ / / 2\\ / 2\ 3/ / 2\\ 2/ / 2\\ / 2\|
| / 2\ 8*cos\x*\-3 + 4*x // 45*\-1 + 4*x / *cos\x*\-3 + 4*x // 54*\-1 + 4*x / *cos \x*\-3 + 4*x // 144*x*cos \x*\-3 + 4*x //*\-1 + 4*x /|
3*|- 72*x*\-1 + 4*x / + -------------------- + ---------------------------------- + ----------------------------------- - -------------------------------------|
| / / 2\\ / / 2\\ 3/ / 2\\ 2/ / 2\\ |
\ sin\x*\-3 + 4*x // sin\x*\-3 + 4*x // sin \x*\-3 + 4*x // sin \x*\-3 + 4*x // /
----------------------------------------------------------------------------------------------------------------------------------------------------------------
/ / 2\\
sin\x*\-3 + 4*x //